University of Kentucky, Physics 404G Homework #5, Rev. D, due Monday, 2018-10-08

1. It has been claimed that World War II was won by the Magnetron, a vacuum device which converts electrical energy into microwave radiation. It enabled short-wavelength tactical radar, which used a frequency too high for electrical circuits of the time. Radiation is emitted from several cylindrical microwave cavities tangent to a central cylindrical bore of a solid copper waveguide under vacuum. A thermionic cathode rod of radius a in the center emits electrons, which accelerate from the negative high voltage cathode to the grounded outside walls of the cavity at radius b. A longitudinal magnetic field B sweeps the electrons in a spiral path around the cylinder, exciting resonant currents on the walls of the microwave cavities they pass by. The electric and magnetic fields are perpendicular in this crossed-field device.

a) We already calculated the equation of motion for an electron in a magnetic field, $\dot{\eta} = -i\omega\eta$, using complex coordinates $\xi = x + iy$ and $\eta = \dot{\xi} = v_x + iv_y$, where $\omega = qB/m$ is the cyclotron frequency. Add the force $\mathbf{F} = q\mathbf{E}$ due to the electric field $\mathbf{E} = \hat{\rho}V/\rho\ln(b/a)$, where a = 0.5 cm and b = 2.5 cm are the inner and outer radii of the cylindrical cavity, respectively, with negative voltage V applied to the *cathode* (central electron-emitting electrode), and the *anode* at ground (0 V). Hint: the final equations should be of the form $\dot{\xi} = \eta$ and $\dot{\eta} = -i\omega\eta + \lambda\xi/|\xi|^2$, for some constant λ to be determined.

b) Integrate these equations in Matlab, for an electron emitted from the cathode essentially at rest. Before you start, what will the motion look like qualitatively? Determine the *Hull cut-off* magnetic field B_c , such that an electron barely grazes the surface of the anode and returns to the cathode, using V = -4 kV. [bonus:] Determine the function $B_c(V)$.

c) The electrons from part a) excite eight cylindrical resonant cavities of radius r = 1 cm distributed around the central cavity, each one separated from the anode (at $\rho = b$) by a w = 4 mm long, t = 5 mm wide channel cut in the solid cylindrical copper block of thickness d. Calculate the resonant frequency using the inductance $L = N^2 \mu_0 \pi r^2/d$ and capacitance $C = \epsilon_0 w d/t$. Optimize both the voltage V_0 and magnetic field B such that the electrons just graze past the resonants at the resonant frequency. Hint: use conservation of energy to determine the required voltage and then return the magnetic field. Warning: Don't try this at home without also including the space-charge effect and its associated "pinwheel"!

2. Phase space of a Harmonic Oscillator—All of our computer simulations have converted second order ODEs involving \ddot{x} into first order equations in u = (x, v). This is formalized in a more symmetric way by Hamilton's equations of the canonical conjugate variables a = (x, p), as discussed in class.

a) The Lagrangian for the harmonic oscillator is $\mathcal{L} = T - V = \frac{1}{2}mv^2 - \frac{1}{2}kx^2$, where $v = \dot{x}$. Calculate the Canonical momentum $p = \partial \mathcal{L}/\partial v$, and solve Lagrange's equation of motion on x.

b) Calculate $\mathcal{H} = p\dot{q} - \mathcal{L}$ and solve Hamilton's equations by determining the time derivative of the complex coordinate $a = \frac{1}{\sqrt{2}}(x\sqrt{k} + ip/\sqrt{m})$, the same pattern used for cyclotron motion.

c) Plot the trajectory a in the complex plane. Show that $\mathcal{H} = a^*a$. Note that the polar representation $|a|e^{i\phi}$ is called *action-angle* coordinates, an alternative to (x, p) with trivial equations of motion. In quantum mechanics a is made dimensionless by factoring out $\sqrt{\hbar\omega}$ so that $\mathcal{H} = \hbar\omega(a^{\dagger}a + \frac{1}{2})$. **3.** There is a direct mechanical-electrical impedance analogy between electrical circuits and mechanical oscillators, matching each quantity in the drag force F = vb with a corresponding quantity in Ohm's law V = IR, which allows direct computation of one system from the solution of the other.

a) What are the analogs of capacitance Q = CV and inductance $V = L\dot{I}$? Write the Lagrangian for an LC circuit, and calculate the canonical momentum of Q. Find the resonant frequency by analogy with the solution for a mass m on a spring k.