
University of Kentucky, Physics 404G
Homework #10, Rev. A, due Thursday, 2018-12-06

1. Cross sections

a) Perform a scattering experiment to measure the cross-sectional area σ of each of T identical
targets drawn randomly on a chalkboard. Throw as many racquetballs as you can and record the
number H of hits versus M of misses. What other measurements do you need to extract the cross
section? Calculate the total cross section σ and its statistical uncertainty from your data and
compare to the actual area of the target. Note that the cross section includes information about
both the target and the scatterer—what area are we actually measuring experimentally? How could
you generalize this experiment to measure a differential cross section?

b) Calculate the Rutherford cross section of α particles (Z2 = 2) scattering from the nucleus
of gold atoms (Z1 = 79) in a thin foil due to the electric force F = Z1Z2e

2/4πε0r
2. This inverse

square law has the same form as gravity, and the trajectories have the same paths as Kepler motion
(H09 #3) with positive total energy E > 0. The repulsive potential corresponds to the opposite
branch of the hyperbola than the attractive potential.

c) A rainbow is formed by rays of sunlight refracting into raindrops, internally reflecting, and
refracting back out toward the viewer. Calculate the scattering angle θ as a function of the impact
parameter s for a given index of refraction n of the raindrop. Calculate the rainbow angle θ0 in the
usual manner as the caustic where dθ/ds|θ0 = 0. Calculate the differential cross section, and show
it peaks near θ0.

The mechanical analog of this wavelike phenomenon is a popular model in nuclear scattering called
the optical potential V (r) = −V0 θ(a − r): a constant potential V = −V0 inside the sphere r < a
and a free particle V = 0 outside. The step function θ(a − r) across the surface of the sphere
causes a finite impulse which decreases the velocity of the particle as it enters the sphere. What is
the relation between the index of refraction n of a light ray, and the ratio E/V0 of total energy to
potential well depth for a particle of mass m, to have the same bend angle into the sphere as the
corresponding refraction?
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2. Nuclear Magnetic Resonance (NMR) is a high-precision spectroscopy technique developed
in 1946 by Edward Purcell and Felix Bloch. This technology is used in Magnetic Resonance Imaging
(MRI) machines. In NMR, the spin s of an atomic nucleus precesses about a constant magnetic
field B0 similar the precession of a spinning top. This characteristic resonance called the Larmor
frequency ωL = γB is proportional to B0 and to the gyromagnetic ratio γ of the magnetic moment
µ to the angular momentum s of the nucleus, ie. µ = γs.

a) Show that γ = e/2m for a charged point particle in a circular orbit, independent of radius r.
This does not hold for a composite particle; we define its g-factor by γ = g · e/2m, ie. how much
larger than for a point particle of the same mass and charge. A pointlike quantum mechanical
particle with spin s = ~/2 has g = 2. For example, the electron has ge = 2.002319, which
is slightly larger than 2 due to vacuum polarization. The neutron also has spin s = ~/2, but
gn = −3.826 due to its internal quark structure. Thus its magnetic moment is µn = g(e/2m)(~/2) =
(g/2)µN = −1.91 µN . The unit of magnetic moment used in nuclear physics is the nuclear magneton
µN = e~/2mp, which equals the magnetic moment of a pointlike proton with orbital angular
momentum ` = ~ (p-orbital).

b) Solve the classical equation of motion (the Bloch equation)

ds

dt
= τ = µn ×B = γns×B (1)

for the Larmor precession of a neutron in a constant magnetic field ẑB0, with initial spin s0 at
t = 0. Compare this with the precession of a spinning top.

c) The mechanical equations of motion are simplified in a rotating reference frame, where

( x̂′ ŷ′ ) = ( x̂ ŷ )

(
cosωt − sinωt
sinωt cosωt

)
. [Rabi, Ramsey, Schwinger, Rev. Mod. Phy. 26, 167, 1954]. Since

the operator ωdt× generates this rotation, the time derivative becomes ds
dt = ds′

dt + ω × s, where
ds′

dt is with respect to components in the rotating frame. Substitute ds
dt into Eq. 1 and show that

the form remains the same except for the replacement of B with the effective field B′ = B+ω/γn.
Note this field is zero if the frame is rotating at the Larmor frequency ωL = −γnB, and thus the
spin remains constant s′ = s0. Reconcile this picture with the solution in the static frame.

d) The z-component of spin sz does not change in a constant magnetic field ẑB0 (called a holding
field because it preserves the spin state). To transition the spin from up to down, we must use an
oscillatory (RF) field B1(x̂ cosωt+ ŷ sinωt). In the rotating frame with angular velocity ẑω, show
that the total field is B′ = ẑ′(B0 + ω/γn) + x̂′B1, which is constant. Let θ be the angle between
B′ and ẑ, and let the initial spin be s0 = ẑ. Show that the z-component of the spin varies as
sz(t) = s0(cos2 θ + sin2 θ cos γnB1t) = s0(1 − 2 sin2 θ sin2(γnB1t/2)), which oscillates at the Rabi
flopping frequency γnB1. Plot the amplitude of oscillation as a function of the RF frequency ω and
note the resonance at ω = ωL. [bonus:] Plot the 3-d trajectory of s in the lab frame over half a
Rabi cycle.
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