
University of Kentucky, Physics 404G
Homework #4, Rev. A, due Thursday, 2019-10-10

1. Calculus of variations was foreseen by Pierre de Fermat, who realized that Snell’s law could
be viewed as a principle of least time (or optical path length) for a ray of light to travel between
two points. He essentially invented calculus to solve this and other types of minimization problems,
although he mislabeled the use of his infinitesimal ε as adequality instead of more correctly as lim

ε→0
.

The term “adequality” for “approximate equality” was borrowed from Diophantus, in whose book
he penciled Fermat’s last theorem in the margin without proof.

Maupertuis, who felt that “Nature is thrifty in all of its actions,” was bothered that time and
distance were not treated on an equal footing. He developed the principle of least action, mini-
mizing instead the integral

∫
vds =

∫
2T/mdt, one of the first appearances of vis viva. This was

further expanded from optics to mechanics by Euler as the abbreviated action S0 =
∫
p dq. The

modern action S =
∫
Ldt and associated equations of stationary action ( ddt

∂
∂q̇ −

∂
∂q )L = 0 were

developed by Lagrange and Hamilton. This same principle extends to quantum field theory and
Feynman path integrals. We have already seen that these equations are just Newton’s law written
in covariant components. This problem explores the interpretation of the expression in parenthesis
as a variational derivative δ

δq for all path variations δq.

a) Minimize the time taken for a ray of light to travel from P1 = (x1, y1) to P2 = (x2, y2)
through an interface at y = 0 between two materials of index of refraction n1 and n2. Assume for
now that the shortest path between two points is a straight line, so that the only variable is x,
where the ray crosses the interface at y = 0. Derive Snell’s law from your answer. [bonus: extend
your solution to the case of a ray crossing multiple parallel interfaces, and show it is equivalent to
∇f(x1, x2, . . .) = 0 for crossing points xi.]

b) Use Fermat’s principle of stationary optical path length to calculate the image of a mirage
by minimizing the functional I[x(y)] =

∫
nds =

∫
n(y)

√
1 + x′(y)dy, or setting its functional

derivative δI
δx ≡ (− d

dy
∂
∂x′ −

∂
∂x)n(y)

√
1 + x′(y) to zero for the path y(x). [Nearing, p. 520] Show the

differential form of Snell’s law, that n(y) x′(y)
1+x′(y)2 = ndxds = n sin(θ) = C is constant along the path

or, rearranging, that x′(y) = C/
√
n(y)2 − C2. To solve this we need to know the index of refraction

n(y). Let us assume it is linear with height, n(y) = n0 +αy. Use the substitution n(y) = C cosh(θ)
to integrate x′(y). Invert the solution of x(y) to obtain y = 1

α(−1 + C
n0

cosh(n0α
C (x − x0))). Note

that a chain fixed at both ends has the same shape for a similar reason: it also hangs under a linear
potential, V (y) = V0 +mgy, of gravity in this case.

2. Phase space of a Harmonic Oscillator—All of our computer simulations have converted
second order ODEs involving ẍ into first order equations in u = (x, v). This is formalized in a
more symmetric way by Hamilton’s equations of the canonical conjugate variables a = (x, p), as
discussed in class.

a) The Lagrangian for the harmonic oscillator is L = T − V = 1
2mv

2 − 1
2kx

2, where v = ẋ. Cal-
culate the Canonical momentum p = ∂L/∂v, and solve Lagrange’s equation of motion on x.

b) Calculate H = pq̇−L and solve Hamilton’s equations by treating the point (x, p) as a complex
number a = 1√

2
(x
√
k + ip/

√
m) and taking its time derivative.

c) Plot the trajectory a in the complex plane. Show that H = a∗a. Note that the po-
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lar representation |a|eiφ is called action-angle coordinates, an alternative to (x, p) with trivial
equations of motion. In quantum mechanics a is made dimensionless by factoring out

√
~ω so

that H = ~ω(a†a+ 1
2).

d) Integrate the abbreviate action S0 =
∫
p dx around one cycle. Note that a circle is the geomet-

ric shape with the maximum area, as demanded by Hamilton’s principle of stationary action.

3. Damped ballistic motion—In H01, we neglected air resistance of our frog-prince’s trajectory.
Assume a spherical frog of diameter D = 5 cm, and mass m = 1 kg. a) Calculate the Reynolds
number R = Dvρ/η for the initial muzzle velocity v0 = 10 m/s, using the viscosity η = 1.7 ×
10−5 N s/m2 and density ρ = 1.29 kg/m3 of air at STP, and decide whether to to use a linear
Flin = 3πηDv or quadratic Fquad = 1

4ρAv
2 drag force. Calculate the terminal velocity vter.

b) Repeat the simulation including air resistance, using the same initial conditions as tuned in
H01. Does he still make it? Determine the initial velocity and direction required to safely land
the frog-prince, accounting for air resistance. [bonus: Plot and compare the trajectories with and
without resistance; including both numerical and analytic solutions on the same graph.]
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