
Complex algebra:  •

has 2 roots:

needs solutions of

So define the new imaginary number                   then                  are the solutions,

and                                            now factors into two binomials like 

Likewise, so we have a whole imaginary line

analogous to the real line

Real and imaginary numbers and add separately like vectors,

so the direct sum

forms a vector space called the "Complex plane" (both real and imaginary).

Complex numbers have the extra structure                   beyond standard vector arithmetic.

This is similar to multiplying a vector by a matrix, except that a matrix has 4 degrees of freedom

(each element), while the complex number only has two:

Thus

Thus multiplication by 'i' is similar to the cross product and also generates rotations (H02#2).

Either of these operations can be scaled by multiplying by a real number.

Imaginary numbers•
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Either of these operations can be scaled by multiplying by a real number.

Unlike matrix multiplication, these operations preserve angles and are called "conformal".

Thus we can use complex functions to form various orthogonal coordinate systems.

Conjugate and Polar coordinates:•

The complex conjugate    sends 'i' to '-i'.

It is used find the 'magnitude' or absolute value    of a complex number  :

The 'argument' or angle can be found using normal trig:

Euler's identity combines these expressions:

The product (and thus exponentials) are simpler in polar coordinates 

(also double-angle formulae):

Multiplying by                rotates counterclockwise by the angle

The complex conjugate in polar coordinates is: 

The universality of complex numbers is captured by the Fundamental Theorem of Algebra:

Any n-th order polynomial can be factored into a product of n binomials over 

and therefore has n complex roots (accounting for multiplicity).  If the coefficients are real

then the roots or either real or occur in complex-conjugate pairs.

•

Thus complex numbers solve a much larger problem than the original one posed.

and multiplying by            stretches by the factor 
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Quaternions were invented by William Rowan Hamilton  (also known for the Hamiltonian)

to generalize rotations to 3 dimensions.  Seeing that  and  represent the   and   ,

he tried unsuccessfully to add a third imaginary number  to represent   .

He later had an epiphany to use a 4-vector            with a separate imaginary

       for each           axis, and carved the famous inscription                

into the  Brougham (Broom) Bridge, Dublin.  The numbers are associative:             ,

but not commutative.  For example, multiplying by      gives                      , 

but multiplying by      on the left gives               , the negative of    .

Thus quaternions have the structure of cross products      for         

and of (negative) dot products            .  A rotation about   in the      -plane:

•

Other tricks were needed to keep  invariant by the rotation.  But this math was too much 

for the 19th century, so Willard Gibbs and Oliver Heaviside, independently distilled

the structure of quaternions into the simpler dot and cross products of vector calculus.

The use of (i, j, k) as unit vectors is a carry-over from quaternions.  Similar contemporary 

developments were Hermann Grassmann's generalization of cross products to  -dimensions, 

and William Kingdom Clifford's combination of dot and cross products into a unified 

"geometric" product, with the same structure as Pauli or Dirac matrices.

Rotations are linear operators (square matrices) that preserve the 'shape' of a set of vectors.

They preserve lengths and angles between vectors, thus depends on the metric and are thus 

called 'orthogonal' transformations.  Rotation matrices are also called orthogonal.  

HW#2 explores the similar structure of the imaginary     and the cross product   ,

and this similar structure is use to 'generate' rotations.

•

Active rotations:  physically rotate the vector in a fixed coordinate system

for example, to describe a rotating object

a)

Passive rotations:  the physical vectors remains fixed, but the reference frame

and basis vectors are rotated, giving the vector different components.

b)

There are two ways to represent rotations:•

Both types of rotations look the same when transforming components

ROTATIONS
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You can see that the same transformation of components involves

rotations in different directions of the vector vs. the axes!

To specify this relation, we need to include basis vectors in the passive formulation:

Notice the difference in primed vs unprimed and in 

left vs right multiplication of R.  These differences are 

why   are called the contravariant components of   .

We can remember this by writing                   and                           so there is only one 

way to write the transformations

while still conserving "index height":

                      is the linear combination1)

Alternatively actively transform the components of the vector 2)

Let's examine each of these in terms of components in the first column of R:

Orthogonal transformations are ones that 'preserve the metric' meaning that you get the 

in the primed system,

which is the same as above.
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Orthogonal transformations are ones that 'preserve the metric' meaning that you get the 

same value of the dot product of two vectors whether or not you transform them.

If this is true for the basis vectors, it will be true for the entire linear space.

•

If the original basis is orthonormal, ie.               then the transformed basis is also

Thus                                         so                             or  

Note the role of the transpose is to flip components to form dot products of individual columns. 

For orthogonal coordinate systems, the components can 

be found by taking dot products (the direction cosines)

•

As an example, here is a derivation of the transformation matrix for the Euler angles of an

arbitrary rotation in 3-d.  You need 3 parameters:  2 (    to describe the direction of the new 

z-axis, and 1    to describe the position of the (x,y)-axes rotated about z.  These are used in 

robotics, and also to describe the rotational motion of a rigid body, the last topic of this course.

•

Passive:  a)

An example is the roll    , pitch    , and yaw    

of an airplaine in a slightly different convention.

We obtain the full transformation matrix by composition 

three elementary rotations of        .

In the standard Euler z-y'-z'' convention, we rotate the coordinate system     about the z-axis, 

then    about the new y-axis, and then    about the new z-axis.  Care is needed to multiply the 

rotations in the correct order:

(wikipedia)

Active:  this time we must rotate    first about the z-axis before the z-axis has changed 

directions, since all rotations are done in the fixed lab frame.  Likewise, we must rotate    

second while the y-axis is still in its original position, and finally the    rotation about z.

a)
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Either way, the full rotation matrix is the same:
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