L23 Reflections: Characteristic impedance

Saturday, October 10, 2020 09:37

Overview: L22 treated waves in context of a string with distributed mass μ under tension directed ALONG the string with FIXED horizontal component T. By similar triangles the vertical force from tension is F = Tf'.

L22 described 1) waves as modes of oscillation/propagation L23 will discuss 2) waves as transfer of momentum/energy

f'= fr i f(x,t) at fixed t F=Tf

f(x,t) "wave function" describes the "trajectory" of the "state" f(x)], $NI: EF = max \Rightarrow (Tf')' = uf or (tradition d'Alembertian g(x, trt) = 0) or trave-k^2 = 0$ $applied to dx \qquad (equation of motion) d'Alembertian g(x, trt) (equation relation (equation of motion)) general solution (equation et w. et$

Wave characteristic property of the medium (string) "velocity" of propagation (evolution) of the wave.

- $v = w_k = \sqrt{v_{il}}$
- 2) Waves as the "transfer of momentum/energy" without the accompanying transfer of material: Conservation of momentum/energy: transfer and attenuation across boundaries
- $F_{\pm} = -F_{\pm} \Rightarrow \text{boundary conditions:} \Delta f = 0 \notin \Delta(Tf') = \Delta(\pm Zf) = Z_{o}f$ (continuity)

Property of the medium: "characteristic impedance" determines relative amplitude, not velocity of wave

 $Z = F_f = \sqrt{Tu}$

• Two material properties affect the wave propagation according to these two characteristics:

property	$physical \rightarrow wave$				propagation dynamics ref			
of medium	{T, U}}	{v, Z}	bu	QK	$\begin{pmatrix} 1 & 9^2 \\ 0^2 & 94^2 \end{pmatrix} = 5$	$\left(\frac{\partial^2}{\partial x^2}\right)f=0$	L22	
of mode	f(x,t)	$A(\omega, k)$	bou	andag I	AF=D	∆(±ZĴ)=ZĴ	L23	

• Different types of waves are similar, but with different material properties and physics

medium	dim	47	pol	state	restoring force	inertia	dynamics	ν	Z	ref:
· slinky	1	L(T)	l (2)	£	K	N	F = K f'	Nyer	NKU	L20/H06
· steivy	}	T	2	f	T	U	F=Tf'	NT/u	STel	L22/H06
· gravity	Z	LT	ļ	N	J	\bigcirc	P=pgN	NAK	Š	L24/H07
o surface	Z	T	۱	M	Å	2,p	$P = \mathcal{P} \nabla_{\!$	Jak	~	L25/H07
· elastic	3	L,T	3	Ū	\mathcal{M}, \mathcal{X}	ρ	- τ=λΙε _{κκ} +λμέ		, 7	L26/H07
• Sound	3	L]	P,p	3.P	0	$\sum_{\mathbf{r}}$	N2F	?	L26/H07
· ceasial		Т	ļ	q,I	YC		$V = \mathcal{KQ} = \mathcal{LI}$	NLC	N46	L18/bonus
electomognetic	3	Ţ	2	Ē,Ē	Ve	Ņ	V×Ē+u3ŧ=0 V×B-ε3€=0	C=	, Nete	PHY 417G
· quantum	3	N/A	JS+	Ŧ	~	7	$(\mathcal{H}=\mathcal{B}_{m}^{2}+\mathcal{V})\Psi$	tik	V ઽ	PHY 520
· Stanifation	3	Q	2	Jup	(9	$G_{\mu\nu} = K T_{\mu\nu}$	C	2	PHY 605

- Transfer of energy and momentum
 - By NIII, the forces between two links on a string are equal and opposite on each link.
 - The balanced horizontal tension T keeps x fixed
 - F_{\pm} transfers momentum and energy along string

- $d\vec{p} = d(m\vec{v}) = m\vec{a} dt = \vec{F}dt$ "momentum flux" $\Re = F_E = \pm Tf'$ $dE = d(\pm mv^2) = mv dv = m\vec{a} \cdot \vec{v}dt = \vec{F} \cdot \vec{v} dt = Pdt$ "power" $\Re = P = F\dot{f}$
- Impedance relates the force to velocity, which relates momentum (force) to energy-flux (power).

$$\vec{F} = m\vec{a} + b\vec{v} + k\vec{x} = \vec{Z}\vec{v}$$
 ($\vec{Z} = i\omega m + b + i\omega k$) for periodic motion

- Equivalent, by the "Impedance analogy" with electrical circuits

$$V = L\dot{I} + IR + 9C = ZI (Z = iwL + R + iwC)$$
 for tank circuit,
thus $F = Z\dot{f}$ and $P = F\dot{f} = Z\dot{f}^2$ like $P = VI = I^2R$

- Matched boundary conditions allows both energy and momentum transfer to down the string
- if $\Delta F = \Delta(Tf') = \Delta(Zf) = 0$ then momentum is conserved. if $\Delta(Ff) = 0 \implies \Delta f = 0$ then energy is also conserved.
- Kinetic and potential energy density along the string:

 $T = \oint X = \underbrace{\pm}_{\mathcal{H}} \underbrace{f^{2}}_{\mathcal{H}} = \underbrace{\pm}_{\mathcal{H}} \underbrace{\psi^{2}}_{\mathcal{H}} \quad \text{is the kinetic energy density (per length dx of string)}$ $S \underbrace{dV} = -dF Sf = -T df' Sf' = d(-T \underbrace{f'}_{\mathcal{H}} \underbrace{f'}_{\mathcal{H}}) + T \underbrace{f'}_{\mathcal{H}} dSf = T \underbrace{f'}_{\mathcal{H}} \underbrace{f'}_{\mathcal{H}} \\ V = \underbrace{dV}_{\mathcal{H}} = \int_{\mathcal{H}}^{\mathcal{H}} \underbrace{f'}_{\mathcal{H}} \underbrace{f'}_{\mathcal{H}} = \underbrace{\pm}_{\mathcal{H}} \underbrace{T f'^{2}}_{\mathcal{H}} = \underbrace{\pm}_{\mathcal{H}} \underbrace{T k^{2}}_{\mathcal{H}} f = T \quad \text{potential energy density}$ $U = T + V = \underbrace{u \widehat{f}^{2}}_{\mathcal{H}} \quad P = \underbrace{v U}_{\mathcal{H}} = \underbrace{v U}_{\mathcal{H}} \underbrace{f^{2}}_{\mathcal{H}} = \underbrace{v U}_{\mathcal{H}} \underbrace{f^{2}}_{\mathcal{H}} = \underbrace{z \widehat{f}^{2}}_{\mathcal{H}} \underbrace{f^{2}}_{\mathcal{H}} = \underbrace{z \widehat{f}^{2}}_{\mathcal{H}} \underbrace{f^{2}}_{\mathcal{H}} = \underbrace{f^{2}}_{\mathcal{H}} \underbrace{f^{2}}_{\mathcal{H}} = \underbrace{f^{$

- Boundary conditions (BCs)
 - We've been using BCs since day 1: an n^{th} -order ODE requires n initial conditions for example: NII $F = m\ddot{x}$ regires x_0, \dot{x}_0 , Hamilton's equations requires p_0, x_0 .
 - Independent variable ODE: (t) is linear. PDE: (t, x, ...) is a whole region

- External BCs: one per point on the boundary (like pins) Elliptic: $x^2 + y^2 \quad \nabla^2 = \partial_x^2 + \partial_y^2 + \dots$ 1 boundary condition / side Parabolic: $t + x^2 \quad \partial_t + \nabla^2$ 1 initial condition + 1 boundary condition / side Hyperbolic: $t^2 - x^2 \quad -\frac{1}{v^2}\partial_t^2 + \nabla^2$ 2 initial conditions + 1 boundary condition / side

While initial conditions determine the exact linear combination of basis solutions, Boundary conditions determine the ratio of amplitudes, and QUANTIZE the wavelength!

Internal (Continuity) BCs: 2 neighbouring BCs tied together (like shoelaces)
 They account for discontinuities in the domain (sudden change in string properties)
 Formed by integrating the n first-order differential equations across the boundary.

$$\begin{array}{l} \overbrace{\substack{0 \neq A \\ \cdots \neq A}}^{e} \int_{-e}^{e} \int_$$

 Characteristic Impedance: The boundary condition Δ(F = Tf') = mf is not so useful because the wavelength λ and thus k~i∂_x can vary with position. However, the frequency 2πv = ω~ - i∂_t is always the same; otherwise crests would have to pile up somewhere! Thus we will express the boundary conditions in terms of f instead of f' for pure frequency waves. This again allows us to convert the BCs from a differential to an algebraic equation:

$$\Delta(F = Tf') = mf'_{a} \implies \Delta(F = \pm Zf) = Zf'_{a}$$
where $Z = \mp F'_{f} = \mp Tf'_{f} = \mp Tt'_{k} = T/F_{k} = JT_{k}$
definition using $f = e^{i(kx \mp wt)} = \sqrt{F_{k}}$

The difference between characteristic impedance and normal impedance is that it represents power transmitted along the line, cumulative resistance along the line. Thus, a 50 Ω coaxial cable does NOT have 50 Ω if you short one end and measure the other! The power will be completed passed into a 50 Ω termination resistor, though, without reflection.

• EXAMPLE: reflection / transmission coefficients, two strings attached by a ring on a rod

- The 2 external BCs fix A and G = 0 (amplitude of wave coming in from $-\infty$). Don't solve for A !
- The 2 internal BCs are used to solve for B and F as functions of A and G.
- The resulting values B/A and F/A are the "reflection" and "transmission" amplitudes, respectively, which are used to calculate the reflection R and transmission T coefficients (also absorption S at Z_0).