L24/25 Water waves

Saturday, October 10, 2020 09:36

Water waves:

<u>Cnoidal waves</u> (nonlinear) – soliton solutions of the KdV eq.

3) Although the restoring force of gravity doesn't explicitly depend on position,

but surface $\eta(x,t)$ between two fluids of different density adds the position dependence

- Gravity tends to level out the water
- Bernoulli's law relates gravity, pressure and velocity, via conservation of energy
- 2) Similar to a string, tension acts as a restoring force

The 2d version of tension is called surface tension (and the 3d version is pressure of Bernoulli's law)
1) Gravity waves involve circular motion in the plane,

- Since water is incompressible to a good approximation, the water has to 'roll' out of the way
- Thus while the surface is a 2d wave, water waves are really 3d waves!
- Normal waves are also irrotational no vortices, which allows application of potential theory
- There is also a 'wave function' $\phi(x, z, t)$ in the bulk of the water, matched to the surface

1) Potential Theory

if
$$\nabla x \dot{\nabla} = 0$$
 then $\dot{\nabla} = -\nabla \phi$ $\phi(x,z) = -\int \dot{\nabla} \cdot dt$
Examples: if $\nabla x \dot{F} = 0$ $F = -\nabla V$ $V = -SF dx$ potential energy
if $\nabla x \dot{E} = 0$ $\vec{E} = -\nabla V$ $V = -SF dx$ volage
if $\nabla \cdot \dot{\nabla} = 0$ then $\nabla^2 \phi = 0$ topologies equation
"incompessible" then $\nabla^2 \phi = 0$ topologies equation
Solution by "separation of variables", same as usue ϕh
 $\nabla^2 \phi = (\partial_{xz}^2 + \partial_{zz}^2) e^{\alpha x} \cdot e^{\beta z} = (\alpha^2 + \beta^2) e^{\alpha x r\beta z}$
let $d = k$ (spatial diag of surface) then $\beta = ik$ so $\phi = e^{ikx} e^{kz}$

2) Surface tension - https://en.wikipedia.org/wiki/Surface tension

3) Bernoulli's law

Google images: cloud waves

