L26 Elastic waves

Friday, November 8, 2019 11:34

• Elastic (seismic) waves: Body (longitudinal and transverse) and Surface waves

<u>https://www.sms-tsunami-warning.com/pages/seismic-waves</u>; link to <u>animations</u>

- Other P-waves: L=1 orbital (QM); p-polarized light (E parallel to plane of incidence)
- Other S-waves: L=O orbital (QM); s-polarized light (`senkrecht', German for perpendicular)
- Continuous analogs of Discrete variables in multi-dimensions

dimension	Discole O-d	I-cl (string)	Continuous 2-21 (surfuce)	3-d (bulk or body)
index	i	X.	XIY	$\vec{r} = (x_1y_1z)$ equilibrium pos.
clisplacement	Xi(t)	f(x,t)	M(x,y,t)	û(r,t) shift of particles
strain (skelch)	Xin-Xi	f'(x,t)	$\nabla M(x,y,t)$	$\hat{\mathcal{E}}(\vec{r},t) \mathcal{E}_{ij} = \frac{1}{2} (U_{i,j} + U_{j,i})$
stress (Jeveion)	F	F=FI	$ \vec{F} = F_L/l$	$\vec{\tau}(\vec{r})$ $T_{ij} = F_{\ell}/c_{ij}$ (pressure, shear)
stiffness	k	$\chi_{T} = F_{h}$	$\gamma = F_{ij}/L$	2, μ (E, G, K, M elastic moduli)
Hooke's law	F=-KDX	F=Tf'	$\tilde{\mathcal{F}} = \mathcal{F} \mathcal{P}_{\mathcal{L}} \mathcal{N}$	$\vec{\tau} = \lambda T \vec{e} \vec{I} + \lambda \mu \vec{e} T_{ij} = \lambda \epsilon_{kk} \delta_{ij} + \lambda \mu \hat{e}_{ij}$
Newton's law	Fi=miXi	, dF=µdx. ÿ	₹•J=d Ņ	$\nabla \cdot \vec{\tau} = \rho \cdot \vec{u} \qquad \tau_{ij,j} = \rho \cdot \vec{u}_i$
wave eq.	MŽ=-KX	$\mathcal{U} \dot{\mathcal{F}} = (T \mathcal{F}')^{l}$	$\nabla \tilde{\mathcal{N}} = \mathcal{F} \nabla_{\!$	$\rho \ddot{u} = M \nabla_{l_1}^2 \tilde{u} + G \nabla_{L_2}^2 \tilde{u}$

• Strain tensor (symmetric derivative of displacement field

For isotropic materials, rotational symmetry reduces C to 2 elements

$$f_1f_2^{-T} = \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x_2 & y_2 \\ y \end{pmatrix} \begin{pmatrix} x_1 & y_2 & y_2 \\ y \end{pmatrix} \begin{pmatrix} x_1 & y_2 & y_2 \\ y \end{pmatrix} \begin{pmatrix} x_1 & y_2 & y_2 \\ y \end{pmatrix} \begin{pmatrix} x_1 & y_2 & y_2 \\ y \end{pmatrix} \begin{pmatrix} x_1 & y_2 & y_2 \\ y \end{pmatrix} \begin{pmatrix} x_1 & y_2 & y_2 \\ y \end{pmatrix} \begin{pmatrix} x_1 & y_2 & y_2 \\ y \end{pmatrix} \begin{pmatrix} y_1 & y_2 & y_2 \\ y \end{pmatrix} \begin{pmatrix} y_1 & y_2 & y_2 \\ y \end{pmatrix} \begin{pmatrix} y_1 & y_2 & y_2 \\ y \end{pmatrix} \begin{pmatrix} y_1 & y_2 & y_2 \\ y \end{pmatrix} \begin{pmatrix} y_1 & y_2 & y_2 \\ y \end{pmatrix} \begin{pmatrix} y_1 & y_2 & y_2 \\ y \end{pmatrix} \begin{pmatrix} y_1 & y_2 & y_2 \\ y \end{pmatrix} \begin{pmatrix} y_1 & y_2 & y_2 \\ y \end{pmatrix} \begin{pmatrix} y_1 & y_2 & y_1 \\ y \end{pmatrix} \begin{pmatrix} y_1 & y_2 & y_1 \\ y \end{pmatrix} \begin{pmatrix} y_1 & y_2 & y_1 \\ y \end{pmatrix} \begin{pmatrix} y_1 & y_2 & y_1 \\ y \end{pmatrix} \begin{pmatrix} y_1 & y_2 & y_1 \\ y \end{pmatrix} \begin{pmatrix} y_1 & y_2 & y_1 \\ y \end{pmatrix} \begin{pmatrix} y_1 & y_2 & y_1 \\ y \end{pmatrix} \begin{pmatrix} y_1 & y_1 & y_1 \\ y \end{pmatrix} \end{pmatrix} \end{pmatrix}$$

E hash Modulus ' (A' : Shear shear sheas $T = \begin{bmatrix} y_1 & y_1 & y_1 \\ y \end{pmatrix} \begin{pmatrix} y_1 & y_1 & y_1 \\ y \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} y_1 & y_1 & y_1 \\ y \end{pmatrix} \end{pmatrix} \begin{pmatrix} y_1 & y_1 & y_1 \\ y \end{pmatrix} \end{pmatrix} \end{pmatrix}$

E hash Modulus ' (A' : Shear shear shear shear shear shear y \end{pmatrix} \end{pmatrix} \begin{pmatrix} y_1 & y_1 & y_1 \\ y \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} y_1 & y_1 & y_1 \\ y \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \begin{pmatrix} y_1 & y_1 & y_1 \\ y \end{pmatrix} \end{pmatrix} \begin{pmatrix} y_1 & y_1 & y_1 \\ y \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix}

D hower for the form the for

c) Bulk Modulus "K": uniform pressure
$$\mathcal{F} = (P_{-P_{-P}})$$

 $V + aV = (l + al)^3 \approx l^3 + 3al \quad \frac{AV}{V} = 3\frac{Al}{L} = 3\varepsilon$
 $\varepsilon = \varepsilon_1 = (-P - \lambda \frac{-3P}{3X + 2u})/\partial u = \frac{-P}{3X + 2u}$ $K = \frac{-P_{AV}}{AV} = [\lambda + \frac{2}{3}M]$
d) Pruave "G" & S-wave "M" Modulus: see below: $M = A + 2u$
restoring force for longitudinal "pressure" & transverse "shear" waves

• Dynamics: Newton's law for bulk waves – extension of 1d and 2d waves

• Vector derivatives for multidimensional waves

for 2d scalars,
$$\nabla_{\pm}^{2} N = (\partial_{x}^{2} + \partial_{y}^{2})N = N_{,iii}$$

for 3d vectors, $\nabla^{2} \tilde{u} = (\nabla \cdot \nabla) \tilde{u} = (\partial_{x}^{2} + \partial_{y}^{2} + \partial_{z}^{2}) \tilde{u}$ or $(\nabla^{2} u)_{i} = u_{i,jj}$
in avalogy with $\hat{n} \cdot \hat{n} = \frac{\hat{n} \cdot \hat{n} \cdot - \hat{n} \times \hat{n} \times}{P_{u}}$, we have $\nabla^{2} = \nabla_{u}^{2} + \nabla_{z}^{2}$
where $\nabla_{u}^{2} \tilde{u} = \nabla \nabla \cdot \tilde{u}$ or $(\nabla_{u}^{2} \tilde{u})_{i} = u_{j,ji}$
 $\nabla_{\pm}^{2} \tilde{u} = -\nabla \times \nabla \cdot \tilde{u} = (\nabla^{2} - \nabla_{u}^{2}) \tilde{u}$
using these, one finds $M = A + \partial_{\mu} \quad G = \mu$ in 3d waves.

 References: <u>https://en.wikipedia.org/wiki/Seismic_wave</u> <u>https://en.wikipedia.org/wiki/Linear_elasticity</u> (uses σ, not τ for stress) <u>https://en.wikipedia.org/wiki/Elastic_modulus</u> (Lamé parameters, others) <u>https://en.wikipedia.org/wiki/Viscosity</u> (shear stress is used to define viscosity)