L29 Energy

Friday, November 15, 2019 08:24

- Conservation of energy is trickier, but most useful as a first integral
 - Impulse \$\vec{F}\$dt = \$d\vec{p}\$ transfers momentum from one particle to another
 trivially applies to the free particle (CM of a system)
 - Angular momentum the same, but $\vec{r} \times$ everything; more useful for orbits
 - used to reduce 3-d problem to a single radial equation
 - Work $dW = \vec{F} \cdot d\vec{x} = dT = -dV$ transfers between `kinetic' and `potential' energy
 - conservation of energy $E = T + V = \frac{1}{2}m\dot{x}^2 + V(x)$ accounts for external forces
 - `potential momentum' qA also exists for external magnetic fields, not as common

- E is also a first integral; second:
$$\frac{dx}{dt} = \sqrt{\frac{2}{m}(E - V(x))}$$
 or $\int dt = \int dx \left(\frac{2}{m}(E - V(x))\right)^{-1}$

- Historical debates between conserved energy `vis viva' (Leibniz, Maupertuis) vs. momentum `movientum' (Descartes, Newton) until we realized both were valid.
 - Culminated in thermodynamic laws, where scalar energy is more important, after Count Rumford observed heat produced while boring cannons. This elevated `vis viva' over the `caloric' theory (conservation of heat alone)
 - Vis viva was subsumed in the theory of `energy' coined by Thomas Young, 1807
- 1) Work-energy theorem $W = \Delta T$ (easy) Coriolis, `quantité de travail mécanique'

$$dW = \vec{F} d\vec{x} = m\vec{a} \cdot d\vec{x} = m \vec{f} \cdot d\vec{x} = m\vec{v} \cdot d\vec{v} = d(\pm mv^2) = dT$$

2) Conservative force $W = -\Delta V$ (hard) relies on concepts from classical field theory Essentially, if forces are symmetric in time with no short cuts or rabbit holes, then the work done against a force (potential) can be recovered as (kinetic) energy.

The Helmholtz theorem organizes the two complementary aspects of fields like $\vec{F}(\vec{r})$

$$\begin{split} & \text{ orgitudivial / transverse separation of fields: } & k^2 \vec{v} = \vec{k} \cdot \vec{v} - \vec{k} \cdot \vec{k} \cdot \vec{v} \\ & \vec{v}^2 \vec{F} = \nabla \nabla \cdot \vec{F} + -\nabla \times \nabla \times \vec{F} \\ \hline \vec{F} = -\nabla (-\nabla^2 \nabla \cdot \vec{F}) + \nabla \times (-\nabla^2 \nabla \times \vec{F}) \\ & = -\nabla V + \nabla \times \vec{A} \\ & \text{ where } -\nabla^2 V = \nabla \cdot \vec{F} = \rho \\ & V = -\nabla^2 A = \nabla \times \vec{F} = \vec{J} \\ & V = -\nabla^2 \rho = \int dt' \frac{\alpha(r')}{4\pi r^2} \\ & \vec{A} = \nabla^2 \vec{J} = \int dt' \frac{\vec{J}(\vec{r}')}{4\pi r^2} \\ & \text{ where } \vec{F} = -\nabla V + \nabla \times \vec{A} \\ & \text{ is uniquely specified by its source } \nabla \cdot \vec{F}, \nabla \times \vec{F} \end{split}$$

We will treat the curl $\nabla \times \vec{F} = 0$ (conservation) in this lecture, and divergence $\nabla \cdot \vec{F} = \rho$ in the next.

- Irrotational ∇× F = 0 fields are conservative F = -∇V
 The Fundamental Theorem of Calculus (FTC) states that sufficiently smooth functions have both derivatives and integrals, and that these operations are inverses of each other modulo a constant of
 - integration. The situation in higher dimensions is a little more complicated: in general, $\omega = d \int \omega + \int d \omega$ so that the one-sided inverse exists only when the other term vanishes.
 - Conservative forces exploit two such theorems: the FTVC (vector calculus) and Stokes' theorem.
 - if $\nabla x \vec{F} = 0$ then $\exists V(\vec{r}) \ni \vec{F} = -\nabla V$ from above.

If there exists such a potential choose the point $\vec{r}_{s} = \frac{1}{2} (ground) + V(\vec{r}_{s}) = V_{\underline{i}} = 0$. Then, by the FTVC, $V(\vec{r}) - V_{\underline{i}} = \Delta V = \int_{1}^{\vec{r}} (dV = g_{\underline{i}} \cdot d\vec{r} = \nabla V \cdot d\vec{r} = -\vec{F} \cdot d\vec{r} = -W$

For this integral to be well-defined, it should be path-independent

$$V(\vec{r}) = \int_{r_1}^{\vec{r}} \vec{F} \cdot d\vec{r} = \int_{r_2}^{\vec{r}} \vec{F} \cdot d\vec{r} \text{ or } O = \oint_{r_1}^{r_2} \vec{F} \cdot d\vec{r} = \int_{r_2}^{r_2} \vec{F} \cdot d\vec{r} \text{ or } O = \oint_{r_1}^{r_2} \vec{F} \cdot d\vec{r} = \int_{r_2}^{r_2} \vec{F} \cdot d\vec{r}$$

by Stokes' theorem. Since this must be true for any path, $\nabla \chi \vec{\vec{F}} = 0$

Geometrically, at each point, $\nabla_{\mathcal{T}}\vec{F}=\vec{\Omega}$ and neighboring sides cancel

so the integral over area = total circulation (integral around boundary)

Curl or circulation equals ΔV between paths to the left vs. right, which prevents equipotentials from matching up.

- Examples of non-conservative forces:
- 1) river bank

where we started.

