
University of Kentucky, Physics 404G
Homework #4, Rev. B, due Thursday, 2021-09-23

1. Calculus of variations was foreseen by Pierre de Fermat, who realized that Snell’s law could
be viewed as a principle of least time (or optical path length) for a ray of light to travel between
two points. He essentially invented calculus to solve this and other types of minimization problems,
although he mislabeled the use of his infinitesimal ε as adequality instead of more correctly as lim

ε→0
.

The term “adequality” for “approximate equality” was borrowed from Diophantus, in whose book
he penciled Fermat’s last theorem in the margin without proof.

Maupertuis, who felt that “Nature is thrifty in all of its actions,” was bothered that time and
distance were not treated on an equal footing. He developed the principle of least action, mini-
mizing instead the integral

∫
vds =

∫
2T/mdt, one of the first appearances of vis viva. This was

further expanded from optics to mechanics by Euler as the abbreviated action S0 =
∫
p dq. The

modern action S =
∫
Ldt and associated equations of stationary action ( ddt

∂
∂q̇ −

∂
∂q )L = 0 were

developed by Lagrange and Hamilton. This same principle extends to quantum field theory and
Feynman path integrals. We have already seen that these equations are just Newton’s law written
in covariant components. This problem explores the interpretation of the expression in parenthesis
as a variational derivative δ

δq for all path variations δq.

a) Minimize the time taken for a ray of light to travel from P1 = (x1, y1) to P2 = (x2, y2)
through an interface at y = 0 between two materials of index of refraction n1 and n2. Assume for
now that the shortest path between two points is a straight line, so that the only variable is x,
where the ray crosses the interface at y = 0. Derive Snell’s law from your answer. [bonus: extend
your solution to the case of a ray crossing multiple parallel interfaces, and show it is equivalent to
∇f(x1, x2, . . .) = 0 for crossing points xi.]

b) Use Fermat’s principle of stationary optical path length to calculate the image of a mirage
by minimizing the functional I[x(y)] =

∫
nds =

∫
n(y)

√
1 + x′(y)2dy, or setting its functional

derivative δI
δx ≡ (− d

dy
∂
∂x′ + ∂

∂x)n(y)
√

1 + x′(y)2 to zero for the path y(x). [Nearing, p. 520] Show the

differential form of Snell’s law, that n(y) x′(y)√
1+x′(y)2

= ndxds = n sin(θ) = C is constant along the path

or, rearranging, that x′(y) = C/
√
n(y)2 − C2. To solve this we need to know the index of refraction

n(y). Let us assume it is linear with height, n(y) = n0 +αy. Use the substitution n(y) = C cosh(θ)
to integrate x′(y). Invert the solution of x(y) to obtain y = 1

α(−n0 + C cosh( αC (x − x0))), where
C = n0 + αy0 = n(y0) and x(y0) = x0. Note that a chain fixed at both ends has the same shape
for a similar reason: it also hangs under a linear potential, V (y) = V0 + mgy, of gravity in this
case.

2. Phase space of a Harmonic Oscillator—All of our computer simulations have converted
second order ODEs involving ẍ into first order equations in u = (x, v). This is formalized in a
more symmetric way by Hamilton’s equations of the canonical conjugate variables a = (x, p), as
discussed in class.

a) The Lagrangian for the harmonic oscillator is L = T − V = 1
2mv

2 − 1
2kx

2, where v = ẋ.
Calculate the canonical momentum p = ∂L/∂v, and solve Lagrange’s equation of motion on x.

b) CalculateH(p, q) = pq̇−L(q̇, q), obtain Hamilton’s equations for this Hamiltonian. Solve them
by treating (x, p) as a complex number a = 1√

2
(x
√
k + ip/

√
m) and matching its time derivative
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http://www.physics.miami.edu/~nearing/mathmethods/mathematical_methods-one.pdf


with Hamilton’s equations.

c) Plot the trajectory a in the complex plane. Show that H = a∗a. Note that the polar
representation |a|eiφ is called action-angle coordinates, an alternative to (x, p) with trivial equations
of motion. In quantum mechanics, Ĥ = ~ω(â†â+ 1

2), with dimensionless â = a/
√
~ω.

d) Integrate the abbreviated action S0 =
∫
p dx around one cycle.

e) [bonus: Modify the code from H03 to plot the phase space of a simple pendulum, including
trajectories fast enough to make complete rotations. Show how the trajectory changes when critical
(also over- and under-) damping is added.]

3. [bonus] Physical interpretation of the vector potential A. The quantity qA has physical
significance as potential momentum, just as qV is potential energy. The purpose of this problem is
to explore the implications of this connection. For more background information see Am. J. Phys.
64, 1368 (1996).

a) Show that ∂ρ/∂t +∇ · J = 0 (conservation of charge). In 4-vector notation, this is written
∂µJ

µ = 0, where ∂ = (∂t,∇), and J = (ρ,J).

b) For a continuous distribution ρ(r, t) of charges in a velocity field v(r, t) so that J = ρv, show
that the convective derivative of ρ (the time derivative of ρ(r(t), t) along the path r(t) with velocity
v = dr/dt) is dρ/dt = ∂ρ/∂t+ v · ∇ρ, where ∂ρ/∂t is the time derivative of ρ at a fixed position r
and ∇ρ is the gradient of ρ at a fixed time. Use part a) to show that dρ/dt+ ρ∇ · v = 0. What is
the physical interpretation of ∇ · v for a velocity field?

c) Show that using the velocity-dependent potential U = q(V − v ·A) in Lagrange’s equation
produces the Lorentz force:

F ≡ d

dt

∂U

∂v
− ∂U

∂r
= q(E + v ×B), (1)

where ∂/∂r = ∇ = x̂∂x + ŷ∂y + ẑ∂z and ∂/∂v = ∇v = x̂∂vx + ŷ∂vy + ẑ∂vz are gradients with
respect to the independent variables r and v, respectively. Use E ≡ −∇V − ∂A/∂t, which in-
cludes time dependence. This generalizes the standard formula F = −∂U/∂r = −∇U . Thus the
electromagnetic Lagrangian is L = T − U = 1

2mv
2 − q(V − v ·A).

d) Calculate the canonical momentum π ≡ ∂L
∂v . This generalized momentum includes contribu-

tions from both the particle and the magnetic field.

e) Calculate the Hamiltonian H ≡ π · v − L. Express H in terms of π and r, not v. This is
the total energy in the system. Thus the Hamiltonian and canonical momentum (H,π) are the
generalized energy and momentum of a system. Each includes a kinetic and potential term.

f) Show that dH
dt = d

dt(T +qV ) = ∂
∂tq(V −v ·A) = ∂U

∂t , where ∂
∂t acts on the potentials, but not r

or v. Thus the total energy H is conserved if the generalized potential is time-independent.

g) Show that dπ
dt = d

dt(p+qA) = − ∂
∂r q(V −v ·A) = −∂U

∂r , where again ∂
∂r acts on the potentials,

but not v. Thus π is conserved if the generalized potential is position-independent.

h) Show that the electromagnetic fields do not change if V → V + ∂χ/∂t and A → A −∇χ.
Calculate the Noether current associated with this gauge symmetry.
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