LO8 Stretches: Eigensystems

Monday, August 31, 2020 16:24

Last lecture, we saw that rotations were special linear transformations where $R^T = R^{-1}$ Now we explore 'opposite' transformations" stretches, where $S^T = S$ The <u>polar decomposition theorem</u> states that any square matrix can be decomposed

into the product of a stretch and a rotation: M = RS where $R^{T} = R^{-1}$ $S^{T} = S$. or in the opposite order: in analogy with complex numbers: Just as complex numbers z = x + iy separate into real $\alpha = \frac{1}{2}(w + w^{*}) = \alpha^{*}$ and imaginary $i\phi = \frac{1}{2}(w - w^{*}) = (-i\phi)^{*}$ parts, Matrices G = T + A separate into symmetric $T = \frac{1}{2}(G + G^{T}) = T^{T}$

and antisymmetric $A = \frac{1}{2}(G - G^T) = -A^T$ parts. This comparison between matrices and complex numbers runs deep in the <u>normal matrix analogy</u>.

However, the polar decomposition theorem cannot be proved using the exponential because matrix multiplication doesn't commute (<u>Baker Campbell Hausdorff</u> formula).

The geometry of the eigenvalue equation $M\vec{v} = \vec{v}\lambda$ is that M stretches \vec{v} by the factor λ .

Algebraically,

$$\begin{aligned} S\vec{v} = \lambda I\vec{v} & \begin{vmatrix} a-\lambda & 1 \\ 1 & a-\lambda \end{vmatrix} = (\lambda - \lambda)^2 - (1)^2 = O & \lambda - \lambda = \pm 1 \\ \lambda = 3, 1 \\ (S - \lambda I)\vec{v} = O & \lambda_1 = 3: \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} & V_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ |S - \lambda I| = O & \lambda_2 = 1: \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} & V_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \\ (characteristic eqn) & \lambda_2 = 1: \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} & V_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \end{aligned}$$

- A symmetric matrix transforms x̂, ŷ to the red dots, the same distance a (thick red line) from both axes. A rotation would have made one distance larger and the other smaller.
- 2. Form two triangles (yellow) from the red vertices to the x, y-axes at the same angle θ , such that the rectangle at the outer vertices (blue) is a square.
- 3. The orange triangles are the same size and shape as (congruent) to the yellow triangles, so shrinking the blue square along the green line transforms it into the trapezoid image of S (blue \rightarrow red dots).

Algebraic explanation why any symmetric matrix has orthogonal eigenvectors--two principles:

1) S "has eyes in the back of its head"! Example symmetry: "A man, a plan, a canal: Panama" (matrices multiply in both directions)

$$(\bigotimes x) = (\bigotimes X) \begin{pmatrix} x \\ x \\ x \end{pmatrix} \begin{pmatrix} x \\ x \\ x \end{pmatrix} \begin{pmatrix} x \\ x \\ x \end{pmatrix} = \begin{pmatrix} x \\ x \end{pmatrix} S \vec{v} = \vec{w}$$
$$(\vec{v}^{T} = \vec{u}^{T} S)^{T} \Rightarrow S^{T} \vec{u} = \vec{v}$$

2) A "matrix sandwich" does both at the same time in either order (associative), unlike English, for example "Bald Eagle Scout"

$$(\vec{u}TS) \cdot \vec{v} = \vec{u}TS\vec{v} = \vec{u}T \cdot (S\vec{v})$$

Apply these principles to eigenvectors of a symmetric matrix:

$$\begin{array}{l} \lambda_{i}^{*}(\vec{v}_{i}\cdot\vec{v}_{j})=\vec{v}_{i}^{*}S\vec{v}_{j}=(\vec{v}_{i}\cdot\vec{v}_{j})\lambda_{j} \Rightarrow \vec{v}_{i}\cdot\vec{v}_{j}(\lambda_{i}^{*}\cdot\lambda_{j})=0\\ 1) \text{ if } i=j \text{ then } \|v_{i}\|^{2}\neq 0 \Rightarrow \lambda_{i}^{*}=\lambda_{i}\in\mathbb{R} \left(\begin{array}{c} \text{eigenvalues}\\ \text{are real} \end{array}\right)\\ 2) \text{ if } \lambda_{i}\neq\lambda_{j} \text{ then } \vec{v}_{i}\cdot\vec{v}_{j}=0 \quad (\text{orthogonal eigenvectors})\\ 3) \text{ if } \lambda_{i}=\lambda_{j}=\ldots=\lambda \quad \text{let } \vec{v}=\chi\vec{v}_{i}+\beta\vec{v}_{j}+\ldots \quad \forall \ d,\beta,\ldots\in\mathbb{R}\\ \text{ then } S\vec{v}=\chi S\vec{v}_{1}+\beta Sv_{2}+\ldots=\chi\vec{v}_{1}\lambda+\beta\vec{v}_{2}\lambda+\ldots=\vec{v}\lambda\\ (\vec{v}_{1},\vec{v}_{2}-\ldots \text{ span a whole }\lambda\text{-eigenspace }!-\text{choose an orthonormal basis}. \end{array}$$

0) The eigenvalue equation can be augmented with all eigenvectors

$$\begin{split} S\vec{v}_{1} = \vec{v}_{1}\Lambda, & S\left(\vec{v}_{1} \mid \vec{v}_{2} \mid \dots\right) = \left(\vec{v}_{1}\Lambda_{1} \mid \vec{v}_{2}\Lambda_{2} \mid \dots\right) = \left(\vec{v}_{1} \mid \vec{v}_{2} \mid \dots\right) D \\ S\vec{v}_{2} = \vec{v}_{2}\Lambda_{2} & \begin{pmatrix} x \times \\ x \times \end{pmatrix} \begin{pmatrix} v_{1}^{x} \mid v_{2}^{x} \mid \dots \\ v_{1}^{y} \mid v_{2}^{y} \mid \dots \end{pmatrix} = \left(\begin{pmatrix} v_{1}^{x} \mid v_{2}^{x} \mid \dots \\ v_{1}^{y} \mid v_{2}^{y} \mid \dots \end{pmatrix} \left(\begin{pmatrix} \Lambda \\ \Lambda \\ \Lambda_{2} \end{pmatrix}\right) \\ SV = VD & (\text{diagonal } D \text{ must multiply from the right)} \end{split}$$

1) V is a transformation matrix into the eigenbasis, the frame where s' is a diagonal matrix

$$\begin{array}{l} \nabla^{T} V = \begin{pmatrix} \vec{v}_{1} \\ \vec{v}_{2} \\ \vdots \end{pmatrix} \cdot \begin{pmatrix} \vec{v}_{1} \\ \vec{v}_{2} \\ \vdots \end{pmatrix} = \begin{pmatrix} \vec{v}_{1} \\ \vec{v}_$$

Example: equation of an ellipse		
41 714	$l = \left(\frac{U}{\lambda_1}\right)^2 + \left(\frac{V}{\lambda_2}\right)^2$	$= \tilde{\omega} t (V^T S^T A) (V^T S^T V) \tilde{\omega}'$
	$(\lambda_1)'(\lambda_2)$	$= (\forall \vec{\omega})^T S^2 (\forall \vec{\omega})$
V V V V V V V V V V V V V V	$= (UV) \left(\frac{1}{2} $	$= \hat{W}^T S^2 \tilde{W} = \tilde{z} \cdot \tilde{z}$
of the circle Z.Z=1	$= \vec{\omega} \vec{D} \vec{\omega}'$	$= \alpha \chi^2 + 2b \chi \eta + c \eta^2$

2) The spectral decomposition or eigen-decomposition of the matrix operator S

$$\begin{array}{l} \bigvee \bigvee^{\mathsf{T}} = (\widehat{\mathbb{V}}_{1}^{\mathsf{T}} \widehat{\mathbb{V}}_{2}^{\mathsf{T}} \cdots) (\widehat{\mathbb{V}}_{2}^{\mathsf{T}}) \\ \stackrel{\mathsf{T}}{\overset{\mathsf{T}}} = (\widehat{\mathbb{V}}_{1}^{\mathsf{T}} \widehat{\mathbb{V}}_{2}^{\mathsf{T}} \cdots) (\widehat{\mathbb{V}}_{2}^{\mathsf{T}}) \\ \stackrel{\mathsf{T}}{\overset{\mathsf{T}}} = (\widehat{\mathbb{V}}_{1}^{\mathsf{T}} \widehat{\mathbb{V}}_{2}^{\mathsf{T}} \cdots) (\widehat{\mathbb{V}}_{2}^{\mathsf{T}} \widehat{\mathbb{V}}_{2}^{\mathsf{T}}) \\ \stackrel{\mathsf{T}}{\overset{\mathsf{T}}} = (\widehat{\mathbb{V}}_{1}^{\mathsf{T}} \widehat{\mathbb{V}}_{2}^{\mathsf{T}} \cdots) (\widehat{\mathbb{V}}_{2}^{\mathsf{T}} \widehat{\mathbb{V}}_{2}^{\mathsf{T}} \cdots) (\widehat{\mathbb{V}}_{2}^{\mathsf{T}} \widehat{\mathbb{V}}_{2}^{\mathsf{T}}) \\ \stackrel{\mathsf{T}}{\overset{\mathsf{T}}} = (\widehat{\mathbb{V}}_{1}^{\mathsf{T}} \widehat{\mathbb{V}}_{2}^{\mathsf{T}} \cdots) (\widehat{\mathbb{V}}_{2}^{\mathsf{T}} \widehat{\mathbb{V}}_{2}^{\mathsf{T}} \cdots) (\widehat{\mathbb{V}}_{2}^{\mathsf{T}} \widehat{\mathbb{V}}_{2}^{\mathsf{T}}) \\ \stackrel{\mathsf{T}}{\overset{\mathsf{T}}} = (\widehat{\mathbb{V}}_{1}^{\mathsf{T}} \widehat{\mathbb{V}}_{2}^{\mathsf{T}} \widehat{\mathbb{V}}_{2}^{\mathsf{T}}) \\ \stackrel{\mathsf{T}}{\overset{\mathsf{T}}} = (\widehat{\mathbb{V}}_{1}^{\mathsf{T}} \widehat{\mathbb{V}}_{2}^{\mathsf{T}} \widehat{\mathbb{V}}_{2}^{\mathsf{T}}) \\ \stackrel{\mathsf{T}}{\overset{\mathsf{T}}} = (\widehat{\mathbb{V}}_{2}^{\mathsf{T}} \widehat{\mathbb{V}}) \\ \stackrel{\mathsf{T}}{\overset{\mathsf{T}}} = (\widehat{\mathbb{V}}_{2}^{\mathsf{T$$

The <u>Singular Value Decomposition</u> is <u>Polar Decomposition</u> followed by <u>Eigen-Decomposition</u> It is defined for any matrix, not just a square matrix, and is useful in cases for linear functions transforming one vector space into a different one, (as opposed to operators on the same space).

$$M = RS = R(V W V^{T}) = (RV)WV^{T} = U W V^{T} W = (\lambda_{1} \lambda_{2})$$
where $U^{T} U = (RV)^{T}(RV) = V^{T}R^{T}R^{T}V = V^{T}V = I$
It is a sum of outer products with stretch factors $M = U W V^{T} = \xi \vec{\alpha}_{i} \lambda_{i} \vec{\nabla}_{i}$.

<pre>octave> A=[2 1;1 2]; octave> [V,D]=eig(A) V = -0.70711 0.70711 D = 1 0 0.70711 0.70711 0 3</pre>	octave> V'*A*V 1.0000e+00 2.2371e-17 -4.3909e-17 3.0000e+00
<pre>octave> V'*V 1.0000e+00 2.2371e-17 2.2371e-17 1.0000e+00</pre>	octave> V*D*V' 2.00000 1.00000 1.00000 2.00000
<pre>octave> M=[1 2;0 1]; octave> [U,W,V]=svd(M)</pre>	<pre>octave> U'*U 1.0000e+00 -1.7409e-17 -1.7409e-17 1.0000e+00</pre>
$U = 0.92388 -0.38268 \\ 0.38268 0.92388$	<pre>octave> V'*V 1.0000e+00 -8.6102e-18 -8.6102e-18 1.0000e+00</pre>
$W = 2.41421 \qquad 0 \\ 0 \qquad 0.41421$	octave> U*W*V'
$V = \begin{array}{c} 0.38268 & -0.92388 \\ 0.92388 & 0.38268 \end{array}$	1.0000e+00 2.0000e+00 8.6102e-18 1.0000e+00
	octave> U'*M*V 2.4142e+00 9.1395e-17 7.1471e-17 4.1421e-01

Example: decomposition of a shear matrix

$$A = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} = RS$$

$$R^{T} (C_{S}) = R^{T} R^{T} I$$

$$S = R^{T} A = \begin{pmatrix} c & \alpha - S \\ S & s + c \end{pmatrix}$$

$$S^{T} = S \quad ca = \beta S$$

$$\frac{\alpha}{2} f_{2} = q_{2} = tan \beta$$

$$Sa_{1}c = \frac{3c^{2}}{2} + c = \frac{a}{c} - c$$

$$S = \begin{pmatrix} c & S \\ S & \frac{2}{2}c - c \end{pmatrix}$$

$$S^{T} = S \quad ca = \beta S$$

$$\frac{\alpha}{2} f_{2} = q_{2} = tan \beta$$

$$Sa_{1}c = \frac{3c^{2}}{2} + c = \frac{a}{c} - c$$

$$S = \begin{pmatrix} c & S \\ S & \frac{2}{2}c - c \end{pmatrix}$$

$$S^{T} = S \quad ca = \beta S$$

$$\frac{\alpha}{2} f_{2} = q_{2} = tan \beta$$

$$Sa_{1}c = \frac{3c^{2}}{2} + c = \frac{a}{c} - c$$

$$S = \begin{pmatrix} c & S \\ S & \frac{2}{2}c - c \end{pmatrix}$$

$$S^{T} = \lambda^{2} - \frac{a}{c} + 1 = 0$$

$$A_{2} = \frac{1}{c} + \frac{1}{c} \frac{$$