L42 Summary

Friday, December 13, 2019 07:02

- O. Mathematics
 - ODEs (Matlab)
 - Leapfrog, Eigenfunctions ($\partial_x e^{ikx} = ik e^{ikx}$)
 - Linear spaces
 - Matrix multiplication, inner/outer products
 - \circ Index notation, dot (δ_{ij}) , cross (ϵ_{ijk}) products
 - Operators: Projections, Rotations, Stretches
 - Reciprocal basis, adjoint vectors
 - Continuous linear function spaces
 - Generalized coordinates, differential geometry
 - \circ Coordinates, Co[ntra]variant basis (\vec{b}_i, \tilde{b}^j) / components
 - Metric (g_{ij}) , Connection $(\vec{\Gamma}_{ij}) \rightarrow Curvature (R^i_{jkl})$
 - Vector calculus and PDEs
 - Nabla (∇): gradient, curl, divergence -> Laplacian
 - FTVC (potentials), Helmholtz (L/T separations)
 - Calculus of variations
 - Functional derivative $\left(\frac{\delta}{\delta x} = -\frac{d}{dt}\frac{\partial}{\partial \dot{x}} + \frac{\partial}{\partial x}\right)$
- 1. General Mechanics
 - Kinematics: Degrees of Freedom (DoF)
 - \circ Time (t), Position/Velocity/Acceleration (\vec{r} , $\vec{v} = \dot{\vec{r}}$, $\vec{a} = \dot{\vec{v}}$)
 - Canonical momentum $(p = \partial L/\partial \dot{q})$, phase space a = (x, p)
 - Rotation $(\vec{d\theta}, \vec{\omega}, \vec{\alpha})$, Euler angles (ψ, θ, ϕ)
 - Dynamics: Equation of Motion (EoM)
 - \circ Newtons laws: (inertia, F = ma)
 - \circ Lagrangian mechanics ($\delta L/\delta x = 0$): NII in covariant components

- Hamilton's principle ($\delta L/\delta x = 0$) Euler-Lagrange equations
- Hamilton's eq's $(\dot{x} = \frac{\partial H}{\partial p}, \dot{p} = -\frac{\partial H}{\partial x})$ symplectic symmetry $(\dot{a} = M\nabla_a H)$
- Rotational vs linear motion: Euler's equations
- Noninertial frames: Coriolis, Centrifugal forces
- Continuum mechanics
 - DoF: wave function (ω, k) , superposition A(k)
 - EoM: wave equation, dispersion relation $v_{\phi} = \omega(k)/k = \sqrt{T/\mu}$
 - BC: external, internal (continuity), impedance $F = Zv \ Z = \sqrt{T\mu}$
- Conserved currents
 - \circ Cyclic coordinates (p = 0), first integrals of motion
 - Noether's theorem (symmetry, current)
 - 1. Momentum $(\vec{p} = m\vec{v})$, 1st moment of mass
 - 2. Angular momentum ($\vec{l} = \vec{r} \times \vec{p}$), cannonical conjugate
 - 3. Energy: kinetic $(T = \frac{1}{2}mv^2)$, potential (V) conservative forces
- Multiparticle systems
 - \circ Moments of mass: (M, R_{cm}, I), CM particle (separation of p, L, T)
 - \circ Reduced mass particle ($\mu^{-1} = m_1^{-1} + m_2^{-1}$)
- 2. Applications
 - O. Ballistic motion
 - a. Constant acceleration, Damped motion
 - 1. Oscillations
 - a. Magnetic field, Hooke's law, Precession
 - b. Impedance analogy (Z): electrical tank circuit
 - c. Systems of particles: eigenfrequencies, normal modes
 - d. Waves: string, waveguides, gravity, elastic, -> E&M, QM, GR
 - 2. Central Forces
 - a. Inverse-square law: Kepler orbits

- b. Cross sections
- 3. Rotational Motion
 - a. Free precession
 - b. Spinning top