Answers to Reading Assignments

Monday, December 3, 2018 12:01
Qo1 - Matlab

QO3 - Vectors

Q04 - Vector and Matrix Products
1. Calculate Ab, A%, a-bxec .or gTh .

1 2 0 1 1 0
whereA=(3 0 1), a=(1), b=(2), c=(4)‘
2 01 2 0 1
\ S | 20\ /1 20 + 22
A\B:(Zo\ Q> 2 A= ZO\B(ZQ\:S(Q\\
201 /10 1 201/ 201 4 4

o Uy O, Otz IR
G. Bl = b\o\o l1 0| =9 O%:(\\l\(%\:g
J

Q;cqck 0%\

QOS5 - Index Notation

1. evaluate d;;a;

gt’ja;): SL\O\\ T 6[20\,}_ ro = O\L,
v
\if-i=2

2.prove that V - V x A(r) = 0 using the fact that €;jk is totally antisymmetric.
- WMA = gLOK 8\; 30 A\( = gjlk a(} aj /AYL: - Eﬁjk (Dkag AL
= — vW\RA ]—? =% Alon Q¥ 0O \ﬂ/\\f\é V“@*A:Q

3. prove that a x (b x ¢) = b(a - ¢) — ¢(a - b) using the fact that
€ijk€kim = 0il0jm — Oim 0

(5\\/‘(@ *‘ZBBE 8\&({') O (\0&)0 = €LL4 O\ ej,Qw\ \O& o = Q)M %\W~8k\m %U{\ O\(b{ Con

= O‘W\bkcw\’“ Q_Qb_,{Q\< — <\O O-C - CO\'IQB\,\

Q06 - Complex numbers
1. Let zy = (21 + dy1) and 23 = (22 + iyz). Whatis z; + 22 7 2122 7 2]z, ?

22 = () 7Ly, vy, )

(\L\“‘%\\(K’“H%Ji (X‘%Z B \1‘\'{1\4 d%‘\h#qlxﬂ
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272, = (rriy i) = Byt

nole 2% = Geriv) g i) = (rbergin ) L)

. . : i o~ - -
2. Write 2z = 1 + 44/3 inthe form z = pei®. (;\ - ﬁ/ ((J‘\ . (02> >

2- 4153 =2e” QAﬁ
|

3. Given the Taylor expansions e® = 1 + s + s /2! + s /3! 4+ 2% /4l + . . .,
cos(s) =1 —s?/2! +s*/4! — ... and sin(s) = s — s* /3! + ... prove Euler's

formula ¢’® = cos ¢ + isin ¢
e 9= |+ (o) + 5 (o) Hle®) 4 (o)

- [N N2 . -
—<\~Z)§® 14&6 /-“>"“b<6“3%€)3+“%‘\.6*“,3
— ¢cO% B+ (sin B bocauge e )

QO7 - Rotations

1
1. Rotate the the vector (2 ) clockwise 45° about the origin.

R45°—\5] = <C®‘T5° SN\ [V =) < [ (
SRR cosds )\ A 2\ 4
2.Show that R} Rg = R gRg = I.

() AR L)

S e/ le Gy -§6C9+(_686 SZer*'clfi

(RTR)R, = RG(RIRY) - BT ~(T)RL- Ry fhos Rh-K

3. Write the 3-d matrix for a rotation of 90° about the y-axis.

O o ) %5% ¢
gy=1© \ o -~
Rya0) (_{ij 973 7«%%

Q08 - Stretches

1. Calculate the eigenvalues and at least one eigenvector of the matrix

S VRN, PP | =0y -0 e
SN

NP TAE R
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Q09 - Generalized Coordinates
1. Prove that ds = b;dq’ using the definition b; = ds/dq’

a2y .=
ds = So dgt = b, 5g" d&(r\% the, digin tule %i
2. Prove that b, - b = 5 using definitions b; —332-‘6(1,[)«' =VqJ and the chai

S D5y = Ph R Qe - Qi g
\OL ‘\O (g/;; ng - g{:}; Tga\—+ %x L,]Th g%T 6¢
3. Prove that 47 — B’ . g using the definitionag = b; A" and b; - b = 5”'

= BB, AT) = (BR15) A= gy A% = A

4. Prove that A; = b; - a using the definition @ = b* A; and b; - b/ = 6—’

5,6 = b.-(PA ) (; %) 2 %ff\'oj/)&;

Q10 - Metric tensor
1. Prove that ds® = g;;dq'dg’ using ds = b;dq' and definition gi; = b; - b;

9’ - 0235 = (Gag)- (6 &q -15;)dg dg = 9y, dg'dg?

A(,: \EX& = \5¢‘ Uoj 73\03 = OZ%B?\ é(-\é - %VJ AO
3. Prove that b; = g,b’ by expanding b; = (3 ) b’ and using the pattern

A; = b; - a to find the covariant components (3;); of b;. You also need
gij = b; - b; .

0= (), 5% e cawgonents (B)); of 6.
(&) = b5 l6p =9, From aveve (Gon)

4. Prove that g;;¢/* = ¥ by combining 4; = g;; A7 with A7 = gi* A, and using
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s i %&: &k

Q11 - Lagrange's equations
1. Prove that I';; = I'ji, where I';; = 8b; /8¢’ and b; = 0s/0q'.

n,%’;%: 8& ’ﬁg& %

2.Show that A = b;q* + I‘Jq g’ star‘ang from A = v, where y = b ¢*, and
the dot means derivative with respect to time. Hint: use the product rule and the

db
chain ruIe— = —ﬂ
ag dt

:A %QOK \‘3 EKQ)Y 4\5 gy \okqj‘“ (8 ﬁqﬂq{
= b 5 +“C3q°r¢€3ré Al g +m@yqa‘

3. Show that e m%qg +'m—q P47, where T = —mgjq “q7.

R - dbg ) - g, g0+ 4 8)
:a%bc‘ M0 = WGP + @@f@@ (voin ulo)

Q12- Lagrange's equations

1. Develop the equation of motion for our poor frog-prince using the Lagrangian.

K= %U\Maugﬁ M
Qf% ¥ - (W\ac\ MWz = O X
5@%& %’% éﬁ?(MSwLW\@ = W\%+M% =0 td

2. Develop the equation of motion for a single pendulum using the Lagrangian.

= Lol - mop R (1~ o) &=-Usinp
ﬁ%% &~ i% mPS w\ﬂQs 0o = wml*8 M%stm@;o
Q14 - Linear and Quadratic Drag

1. Derive v (t) = vy + (vg — Vier Je /7 Where vy, = mg/band 7 = m/b, for
motion in a single direction with net force F = mg — bv .

mey = F= \m%—lm& whan F=0, q&f%:%ﬂo
D *~(«7—vb5/1«

O

9

\1

v
(v _=Pdeg Do, = ~%l, ©-%
q)or\y’(Ddt c\)_A_(P,_V,___._-——
- = (Do DY @Ub/ﬁ i)bjf/’__‘
\

2. Develop the equation of motion for a single pendulum using the Lagrangian.

Mmoo = F :\P{\awcﬁf’ w\l\a/\FsO) WTS:W% or= @V\%
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U = g(l-0%s52) Vp= TG VL%
dv Dy, A Qo 2= U, Youh o
ot~ b, s s s
S&D&ok =, de/e A
A-cho = G/ Y
A= % Yo (oo + %%/B

Q15- Magnetic Fields

1. Using 7 = ¥ + ity and the magnetic force law F = gquv x B, show that 1} = —iwn fora
particle of mass m and charge g travelling in the magnetic field 2B so thatw = ¢B/m.

MO = F= gk ndes Zr(L g v, = SR
,T)::;‘—méix;i} E/(’l)‘ﬂrt’l)'%x:’qxé*év%
M=~ n o 26D ~ 09) e T ~ Y20y

whee W= FR Ao Cu{db‘ﬂ)d\ WOW‘OU@W

2. Integrate 1} = —iwn twice to determine the position £(t) = z 4 iy of the particle which
starts from position C' = zp + iy at initial velocity A = vzq + dvy,.

——

%6

L16 - Hamilton's Equations

Q17 - Harmonic Oscillator

1. Solve the equation of motion for the position z(t) of a mass m at the end of a spring of
stiffness k with the other end held fixed, given that the mass is held at rest at ¢ = 0, but

displaced a distance Zp from equilibrium. You can use either the force F' = —kz or potential
V= —%kzg of the spring.

L= 2 ~ Sl oC  MO=F= -k,
SR - < S r ko - mi k=0
Lok =t (MgEr kYx=0 A= @:,X%\

e e+ C,EWY = i, asob ¢ @gg%;gmw%
A= B, asO+ &, sno= %(VVE() 2

i, = -wban0+ bheod = wh,
L= oy eps Wb + %smwb
you can ap e e G ¥ G batb 6, o eusier
Q18 - Impedance Analogy

1. Solve the voltage equation for the charge Q(t) on a capacitor of capacitance C' connected
to an inductor of inductance [, in a series circuit, given that the initial charge on the capacitor
is Qp and initial currentis Iy = 0 at ¢ = (.

WO+ Q=0  A+FQ-0 o fr
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QF Q= =0 de W

Q= b swb + (b, sinwt wroe, EXCL s atrisihut
= Qloy = %[ T, - Q(o\ = %Z/UO

Q= Qs ub « Byetnwt.

Q20 - Damped Oscillations

1. Calculate the damping constants 8 and wp in terms of m, b, k in the equation of motion
4+ 2Pzt + wgz = () of a damped oscillator, for a mass m attached the end of a spring with
force F' = —kg with a damping force F' = —bg .

Fowa = -oU -kt X4 Tl + 5ad=0  2p5% wi="

2. Calculate the damping constants 8 and wy in terms of L, R, C for equation of motion
4 28+ + wgz = 0 of a tank circuit with an inductor L, resistor R, and capacitor C'
connected in series.

EVRIR S L T LSV R A

3. Find the general solution of the equation of damped oscillatory motion
&+ 205 +wiz = 0.

Lefpos wfor=0  Whee oYy wiely W a-elt
R+ 2 b+ dL =0 O= B E g = - bW, | whewk-p?
o= e"&tﬁ%( cs Wb+ B sinwb)

4. Find the critical damping constant 8, as a function of wy in the equation
&+ 28: + u)g:z = 0. Above j,, the motion ceases to oscillate, but immediately damps out.

crificed c)avfﬂna= E=Ws S0 NpHer =0

5. Calculate the coefficients Cy and Cy in the solution z(t) = e~#(Cye*1! 4+ Coe™1t) of
&+ 2B¢ +wiz = 0, where w? = wi — B2, for the initial conditions z(0) = z, and
57(0) = #5. WARNING: you might want to practice this once or twice!

HINT: you can solve the easier equation z(g) =e ’5'(3, coswyt + By sinw, L). This was
obtained by expanding e**1* = cosw;t + i sinwy ¢ and collecting terms to get
B, = C; + C; and B, = i(Cy — Cy).

2= (B, msD +&emdy = B,
fo= —BS%0(b,0s0+ Bsn0) ¥ €20-10d 80 wh,csO) = ~BBTWb,
o= P (o, e Wh + 93*%&[511 sin wt)

Q21 - Driven Oscillations
1. Show that the above differential operator D = md—z + b% + k is linear, that is:
DiC] 3 [t) -+ ngt(t)] = D[xl {t}] -+ CgD[ict(t)].

jﬁ“;(@m(tw(,pg(a) < C, ﬁ;ac.t’d +C, %x_&)
aso composthan andh scollae wubbicabion and addifion ore Jineu

g‘% Gyl = fg(& %+ CZM = O = ¢ Gt )+ dritt)
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2. Show that the solution to D[z] = & + 284 + wjz = f(t) (driven damped
oscillator) is equal to z(t) = x,(t) + @ (t), where x,(t) is one particular solution
to the full differential equation D[z]| = f(t). and z,(t) is the general solution to
the homogeneous equation DF‘:] = ( that we solved last time. Note that the
homogeneous solution damps out over time, leaving only the particular solution
(the attractor).

D) = Dot +0q,) = Dy » DG} = $6) + O
F Hae wiFHal conditions ab wld) are acb
Ot ot af be ﬂ/\Q ilcd uelue o :r.*‘c{)
hon & =aas B as-d-id define the m%aﬂoowﬂljmoms

Poc e owxo%mmous e%»dnom DM

3. Show that the particular solution of the damped oscillator

Diz] = & +2B& + wiz = fo cos wt driven at pure frequency w is the real part z of
2=a +iy = Ce™* .where C = fy /(w} — w* + 2ifw). Hint: let f be the real part of
foe™t = fo(coswt + isinwt) . to obtain the complex equation D[z] = fye™!. Substitute
2 = Ce™t and solve for C.

Fa2pztoie = QD@W hee zeocriy = Cet? (e wal o)
(~0 + 8L W +w k) (e b= G
S

= A (S
C 7 - = RS
LoD ) —\—Z_L,P;M)
Al fo
4. Show that the solution (7 — A~ to question 3 has amplitude 4 = ~7——————— and

V(W -w?) +(280)*

1

1 28w . 2
phase shift § = tan H . Hint: take the square root of 42 — IC\' = CC* toget A,
e

and § is the polar angle of the complex denominator ug - w? + 2ifw .

i) T=Rely Fhon 2= 1= pt dand=§
Hans A=\0) = (T :m an S = AR /(e 1)

Q23 - Coupled Oscillators

1. Determine the two coupled equations of motion and therefore the stiffness matrix K and
mass matrix M in the equation M# = — K a for two masses 1,2 separating three springs
k123 with outside ends fixed, as in Fig. 11.1.

ME = Yo (2,7) ~ k(g ) = —(kek) X, Ko %,
W\ZIZL ( ”OCQ ~ ko (2,- QC\B = Koo o MU‘LH%B XLy

o N = [ \ (W\\ \ ( \<d'\&2 ‘\Lz
— = — S0= ( fal =
M % K uwonere x M W, [N K, \ AZH«;
2. Factor out the time dependence ¢ = ge'“t of M2 = — Ka . as usual, to obtain the time-
independent equation (K — w? Mja=0.

i

%:&ewb ( \) u —w75€, W\\thﬂ W

3. Find the two eigenvalues and eigenvectors of K to solve the above equation
Ka = —muw*a for the two frequencies and modes of oscillation of the system above in the
case of identical masses ™My = My = M and spring constants ky = ky = ks =k .

IK-AT| = [kt e o (-2t 2 - kE =0
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| -k, kot =y
W= (hrdlerls) % v (k\kzﬂiz\fg \(»3)4-1\ N -REXR+T =D
Ne= Ex pi ~TC s L,O\z W WL Y, =M,

T gur cosey k=lomlom ke wmem,=m
o Bx-AY-Yr=0 2= adkelo= k) 2k
el Ge= () x=3k: A= ()

Q31 - Conservation of Momentum

1. Show that Newton's third law implies that A(z; + p;) = 0 for the ‘internal’ interaction
between two particles.

NI F=-F, Yhs aprp)= Foatrl At =

2. Show that the F= f} where [ is the sum of all forces and f is the total momentum.

R P et

= g .
ZF’;&“Z\’@&*Z.A FE=2¢%=TF
3.Show that 5 _ prf . where P =Y, is the total momentum, M = %" m;, and f is the
center of mass, ie. MR = omyf-

p——

P= £ - emt =4 EmT =FMR = MR

4, Calculate the center of mass g of a cone of radius r and height f . /‘
M= Jdm = P T de = S pW(&%\lo\% ‘ \
= el i = p-3TRA @

Mz= Jedn = en i 2de = pkTR
= (0,0, %)

Q32 - Conservation of Angular Momentum

1. Starting from Newton's second law F' = p and the definitions of angular momentum

£ =r x pandtorgue T' = r » F about the origin, prove the equivalent law for angular
motion T — g Show that £ = Jaws, where | — mp? is moment of inertial for a single particle
and w = # x v/ris the angular velocity about the origin.

q- &)= phpreap - ¢ af =N

=

i = Frm(@xe) =mlex(Fe )= T2

-V

7=

— R Lft —Xgl S
Whett, T = -t By = W 66 = [4)4 £ th 5
—2X «%L]
2. Show that I" = 0 for a central force F = ¢ F and thus £ is conserved. Use this to prove
Kepler's second law, that the line drawn from a planet to the sun sweeps out constant area
dA = %r * dr = £dt /2m per time dt.

FuE = FxiF=0 Jab
:%P%A?— :zll\;‘——\f\ F%@O‘»}C :93/7\

&
=3
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\ ~oy oy T /-—an\ E

_ _ =
o\}& —Cﬁc&' = 2 V%P&lﬁ = T

3. [Bonus:] Show that for a system of particles of mass and position m;, 7, the total angular

momentum £ = 3" £;separates into the sum the angular momentum of the center of mass

L = R x P and the angular momenturmn relative to the center of mass
£ =% (& =rlxpl)usingr; = R+ 1}

jgzgj’- P = £ @)t m(B+e)
RemR + Rx Z}V\v + Zm@% xR + & Ptme
= Rx®+ 28/4p/ < &P~ Y

Q34 - Conservation of Energy

1. Use F = ma to show that the net work W = IF - dr done on an object equals its
change of kinetic energy T' = %m v

dW= Fde = mdL-# = mdl.dE = mdi = dbmy®= oT

2. A conservative force F/(r,t) is one where ¥ »« F = 0 and 8F /3t = 0. Using Stokes'
theorem, show that the integral V() = — fnr F(r) - dr is independent of the path of
integration. Using the Fundamental Theorem of Vector Caleulus, show that the force can be
written as the gradient F' = — V'V of the potential defined above. (see Mason)

Srdt-SFde = §Fae = SwiFda =0

Y- R s A
Ths ) vV s -5 Fde = S-gVedr = §av
<o F=-vwV
3. Questions 1 and 2 imply conservation of energy E = T + V. Solve this formula for v and

integrate dt = dx /v to show that the time taken for a body to go from Zg to @ in one

T dx
dimension is t — fo = J;O TEmETE
EImE—V(a)]

5 t
E=T+V&) T:LZW\(%#E\ jtiﬂJc =N@O;\é jmkj

L35 - Keplerian motion

Q36 - Anatomy of the Inverse Square Law
1. Integrate V' = — fr F - dr to find the potential V(r) of the unit inverse square central force

_r;41rr

(F_C s _ (T-a LI S
V= L\“ ‘iihv(l'&r —ogémg’- T 4rc |, T 4
=

2. Caleulate the gradient F = — V'V (r) of the potential V(r) = 1/4mr of an inverse square force.
-V <= &5 ~ ez
4—*«( Sf c% /—I—r« = 4

3. Calculate the curl W = F(r) of the force F' = # /4mr® to show that it is conservative, and thus

has a well-defined potential V(7). [if you do it in Cartesian coordinates, one component will suffice]

A ¢ & % s
g
\Y% = 15 =
* Lt S =5 6 O

4. [bonus] Show that the divergence ¥ - F(r) for the force F' = # /4ar? is zero everywhere
but the origin, where it is infinite. Calculate ﬁw F - da around the surface of a sphere, so that
the diversence thearem £ F o da = [ . Fdrheromes [ d+ T . Fiel =1 and we
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4. [bonus] Show that the divergence ¥ - F(7) for the force F' = # /4ar? is zero everywhere
but the origin, where it is infinite. Calculate fm,. F - da around the surface of a sphere, so that
the divergence theorem .i‘}'u’ F-da= fv V - Fdr becomes fV dr V- F(r) = 1,and we
can say V - F(r) = §*(r).

V‘c?%@’r%‘ar&émﬁ O cregpt = @ =0

A A
\,SVL;;‘_L/ = gvgda°4%"r—" :%‘ISVZO\&J‘%? = ‘f}?q‘ﬂg&& = |

Thus Hhe 4ol ditergene, & 1 of &0 O - 510

Q38 - Cross Section

1. Given the relation b(6) between scattering angle § and impact parameter b (we
used the symbol s in class), show that the differential cross section is

& = ol as| 49,
do’ o j@e
C@@: &G}% K% o Ae

2. Calculate differential scattering cross section of marble of negligible ragius

bouncing off of a fixed bowling ball of radius R.
e 7

%%J o Rco&%lgsm% :_/@_f SIS =4 Qe

b=Remd =Rexs®

sn O
Bows: 0= Sgdl = SEEAD - ™ (owsseiond o)

Q41 - Inertia Tensor

1. Calculate I, about the corner of a cube.

To= S&m(tﬁ#ﬁ = ’V\_)\a" @V SZM Sod& (%a 2°)
§d>c S%qu Qe =alia-La - 2N

2. Calculate I, about the corner of a cube.

L%:MW\(“M S 1o Saqdu &da = »ov 2 Mol

3. Calculate one of the three principal moments of inertia and the corresponding

8 -3 -3
principal axis about the corner of a cube, I = Ml‘f (—3 8 —3) .
-3 -3 8

T LT -3 LT, Fud et (1)
Er 10l = 021083 =201 = 9% 22022290+ 1\ +2-2 42
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= A T -3 Find egersiu o (i) L
=21 \ = (2 + Q- 13 -3(12) = 6N+ 305230+ 1) +2-3+25

L a ]
L1 = -0° £39% = (20 =0 A=3,0,0

[

oy s, (10051}, s e 3 4]
e octhoganall gare is the dgenspae & %ep=0
thos L= WE(11-3.2) = B!, oLy = e
» Mtevadie: i gou fike to Hiink big, cdbuldte dirdly
T T St PR
2 = -2+ QN - s K +242

= (020222 +12]) = -(x-2Y MU)2=0
Ne=g, Wl saue A e,
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