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[15 pts] 1. Short caleulations.

a) Given a unit vector nn = [1,1,0]/v/2, project the vector © = [4,0,0] into the sum of a vector

parallel to n and another vector perpendicular to n.
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b) Transform the vector F’(J:,y,z) = zr completely into spherical coordinates.

5 2y = (ﬁce—ésg(rseo%}

c) Simplify [*_ dz2*§(z — 2).
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[20 pts] 2. Essay question: answer the following questions in paragraph form. You may illustrate
your description, but will also be graded on your written response.

a) What are the geometric relations between a vector field E( ), its flow surfaces, its eurl V x E,
and line integral f’P E - dI? Explain Stokes’s theorem and the existence of a scalar potential in terms

of this geometry.
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b) What are the geometric relations between an axial vector field B(7), its flux lines, its diver-
gence V - B, and surface integral fS B - da? Explain Gauss’ theorem and the existence of a vector

potential in terms of this geometry.
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20 pts] 3. Calculate the integral [¢V x (7 sinf+ ¢ r)-da, where -
S is top half of a sphere of radius » = 2 about the origin.
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b) Verify Stokes’ theorem by calculating the corresponding line integral.

5 gﬂ (v dr) = jc?m do (S rr)
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[20 pts] 4. a) Show that the divergence of an inverse square force field has the singularity:

V- ——l"rdr( 7).
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b) Using —Vzﬁ = §3(% ), and properties of 5*(%Z ) where 2 =F—7", show for any field p(7¥) that
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¢) Derive the Helmholtz theorem: that any vector field F‘{ 7) may be deomposed into longitudinal
and transverse components expressed in terms of its gradient and curl: [circle the potentials below]
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