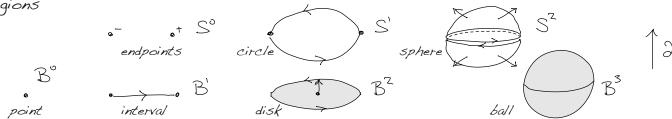
Section 1.3.2-5 - Region | Form = Integral



- ~ definition of boundary operator 'd'
 'closed' region (cycle): 0S=0
- ~ a boundary is always closed 30R = 0
- ~ is every closed closed region a boundary? $\partial S = 0 \iff S = \partial R$
- ~ a room (walls, window, ceiling, floor) is CLOSED if all doors, windows closed is OPEN if the door or window is open; ~ what is the boundary?

 $\nabla \cdot \nabla \times A = 0$

~ think of a surface that has loops that do NOT wrap around disks!

* Forms - see last notes

~ combinations of scalar/vector fields and differentials so they can be integrated ~ pictoral representation enables 'integration by eye'

RANK	NOTATION	REGION	VISUAL REP.	DERIVATIVE
scalar	$\omega^{(0)} = f$	Q point	level surfaces	$d\omega^{(0)} = \nabla f \cdot d\vec{l}$
vector	$\omega^{(1)} = \widetilde{A} = \widetilde{A} \cdot \widetilde{al}$	Ppath	flow sheets	dwa) = DxA. da
p-vector	$\omega^{(2)} = \widetilde{B} = \widetilde{B} \cdot d\widetilde{a}$	S surface	flux tubes	dwa = V·B dr
p-scalar	$\omega^{(3)} = \widetilde{\rho} = \rho d\tau$	V volume	subst boxes	$d\omega^{(3)}=0$
	2 " 22 " " 1		edge of	

~ properties of differential operator d'

transforms form into higher-dimensional form, sitting on the boundary

~ Poincare lemma ddw=0

~ converse - existance of potentials $V_{,A}$ $d\omega = 0 \iff \omega = d\alpha$ $\forall x \in E = 0 \iff E = \nabla V \qquad \nabla \cdot \vec{B} = 0 \iff \vec{B} = \nabla x \vec{A}$ for space without any n-dim 'holes' in it

 $\triangle \times \triangle \wedge = 0$

- * Integrals the overlap of a region on a form = integral of form over region ~ regions and forms are dual they combine to form a scalar
 - ~ generalized Stoke's therem:

'd' and 'd' are adjoint operators - they have the same effect in the integral

$$\int d\omega = \int \omega$$
 note: $O = \int \omega = \int d\omega = \int d\omega = O$
 R ∂R ∂R ∂R ∂R

Generalized Stokes Theorem

* Fundamental Theorem of Vector Calculus: Od-Id

$$\int_{a}^{b} \nabla f \cdot dT = \int_{a}^{b} df = f(b) - f(a)$$

 $\frac{dl}{df+df+df} = \Delta f$ $f=0 \mid 2 \quad 3$

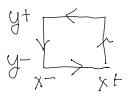
* Stokes' Thereom: Id-2d

$$\nabla x \overrightarrow{A} \cdot d\overrightarrow{a} = \frac{\partial Ay}{\partial x} dx dy - \frac{\partial A}{\partial y} \times dx dy + ...$$

$$= A_y(x^{\dagger}) dy + A_y(x)(-dy) + A_x(y^{\dagger})(-dx) + A_x(y^{\dagger}) dx + ...$$

$$= \sum \overrightarrow{A} \cdot \overrightarrow{A} \cdot \overrightarrow{A} \quad \text{around boundary}$$

$$+ \text{other faces}$$

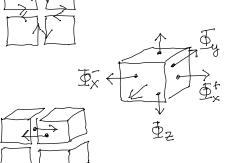


* Gaus' Thereom: 2d-3d (divergence theorem)

$$\nabla \cdot \hat{B} d\tau = \frac{\partial B_x}{\partial x} dx dy dz + \frac{\partial B_y}{\partial y} dy dz dx + \frac{\partial B_z}{\partial z} dz dx dy$$

$$= B_x(x) dy dz + B_x(x) (-dy dz) + 4 other faces$$

$$= \sum \hat{B} \cdot d\hat{a} \text{ around boundary}$$



* note: all interior f(x), flow, and flux cancel at opposite edges

* proof of converse Poincare lemma: integrate form out to boundary

* proof of gen. Stokes theorem: integrate derivative out to the boundary

$$\int dw = \int w \iff \int x \varphi \cdot d\vec{x} = \int \varphi \qquad \int x \vec{A} \cdot d\vec{a} = \int \vec{A} \cdot d\vec{a} \qquad \int \vec{B} \cdot \vec{B} d\vec{r} = \int \vec{B} \cdot d\vec{a}$$

* example - integration by parts

$$\nabla \cdot \left(\frac{\hat{F}}{r^2}f\right) = \left(\nabla \cdot \frac{\hat{F}}{r^2}\right)f + \frac{\hat{F}}{r^2} \cdot \nabla f$$

$$\int_{\mathcal{V}} \hat{F}_{r^2} \cdot \nabla f \, d\tau = \int_{\mathcal{V}} \nabla \cdot \left(\frac{\hat{F}}{r^2}f\right) \cdot d\tau - \int_{\mathcal{V}} \left(\nabla \cdot \frac{\hat{F}}{r^2}\right)f \, d\tau$$

$$\int_{\mathcal{V}} \frac{1}{r^2} \frac{\partial f}{\partial r} r^2 dr \cdot d\Omega = \int_{\partial \mathcal{V}} d\tau \cdot \frac{\hat{F}}{r^2} f - \int_{\mathcal{V}} 4\pi S^3(\tilde{F}) f \, d\tau$$

$$\int_{\partial \Omega} \int_{r=0}^{R} df = \int_{r^2} d\Omega \hat{r} \cdot \frac{\hat{F}}{r^2} f - 4\pi f(0)$$

$$\int_{\partial \Omega} f(R) - f(0) = \int_{\partial \Omega} f(R, \theta, \phi) - 4\pi f(0)$$

$$4\pi \left[\langle f \rangle_{R} - f(0) \right] = 4\pi \left[\langle f \rangle_{R} - f(0) \right]$$