Section 1.4 - Affine Spaces

* Affine Space - linear space of points POINTS

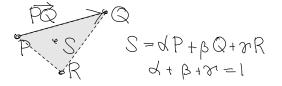
VECTORS

operations

$$Q - P = \vec{V}$$

$$P + \vec{V} = Q$$

$$\overrightarrow{\mathbb{W}} = \cancel{\mathbb{Q}} \overrightarrow{\mathbb{U}} + \cancel{\mathbb{B}} \overrightarrow{\mathbb{V}}$$



~ points are invariant under translation of the origin

~ can treat points as vectors from the origin to the point (calculational trick) cumbersome picture: many meaningless arrows from meaningless origin

vector:

field point
$$\vec{r} = (x, y, z)$$

source pt $\vec{r}' = (x, y, z')$

displacement vector: $\vec{\mathcal{H}} = \vec{\mathcal{V}} - \vec{\mathcal{V}}'$

displacement vector:
$$\vec{\mathcal{H}} = \vec{r} - \vec{r}'$$
differential: $\vec{\mathcal{H}} = \frac{\partial \vec{r}}{\partial q} dq = \vec{b} dq$

 $(\hat{S}, \hat{\phi}, \hat{Z}) = (\hat{x}, \hat{y}, \hat{z})$

~ the only operation on points is the weighted average weight w=0 for vectors and w=1 for points

~ transformation: affine
$$vs$$
 linear $\begin{pmatrix} R & \vec{t} & \vec{t} \\ 000 & l \end{pmatrix} \begin{pmatrix} \vec{r} & \vec{t} \\ l & l \end{pmatrix} = \begin{pmatrix} R & \vec{r} + \vec{t} \\ l & l \end{pmatrix}$ ~ decomposition: coordinates vs components $\begin{pmatrix} R & \vec{t} & \vec{t} \\ 000 & l \end{pmatrix} \begin{pmatrix} \vec{r} & \vec{t} \\ l & l \end{pmatrix} = \begin{pmatrix} R & \vec{r} + \vec{t} \\ l & l \end{pmatrix}$ ~ they appear the same for cartesian systems! $\begin{pmatrix} R & \vec{t} & \vec{t} \\ 000 & l \end{pmatrix} \begin{pmatrix} \vec{r} & \vec{t} \\ 0 & l \end{pmatrix} \begin{pmatrix} \vec{r} & \vec{t} \\ 0 & l \end{pmatrix} \begin{pmatrix} \vec{r} & \vec{t} \\ 0 & l \end{pmatrix}$ ~ coordinates are scalar fields $q^{\hat{v}}(\hat{r})$

* Rectangular, Cylindrical and Spherical coordinate transformations

~ math: 2-d -> N-d physics: 3d + azimuthal symmetry

~ singularities on z-axis and origin

$$S_0 \equiv Sin \Theta$$

 $C_0 \equiv COS \Theta$

$$\chi = S \cdot C_{\phi}$$

 $\chi = S \cdot S_{\phi}$

rect.
$$cyl.$$
 $sph.$

$$X = S.C_b = Y.S_b.C_b$$

$$y = S.S_b = r.S_b.S_b$$

 $Z = Z = r.C_b$

$$\frac{d\vec{l}_{rec}}{d\vec{l}_{syl}} = \hat{x} dx + \hat{y} dy + \hat{z} dz$$

$$\frac{d\vec{l}_{syl}}{d\vec{l}_{syl}} = \hat{x} dx + \hat{y} dy + \hat{z} dz$$

$$\frac{d\vec{l}_{syl}}{d\vec{l}_{syl}} = \hat{x} dx + \hat{y} dy + \hat{z} dz$$

$$\frac{d\vec{l}_{syl}}{d\vec{l}_{syl}} = \hat{x} dx + \hat{y} dy + \hat{z} dz$$

$$\frac{d\vec{l}_{syl}}{d\vec{l}_{syl}} = \hat{x} dx + \hat{y} dy + \hat{z} dz$$

$$\frac{d\vec{l}_{syl}}{d\vec{l}_{syl}} = \hat{x} dx + \hat{y} dy + \hat{z} dz$$

