Section 3.1 - Laplace's Equation

* overview: we leared the math (Ch I) and the physics (Ch2) of electrostatics basically concepts of Phy 232 described in a new sophisticated language ~ Ch 3: Boundary Value Problems (BVP) with LaPlace's equation (NEW!) a) method of images b) separation of variables c) multipole expansion ~ Ch 4: Dielectric Materials: free and bound charge (more in-depth than Phy 232)

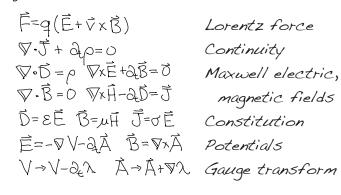
$\chi \xrightarrow{d} (V, \bar{A}) \xrightarrow{d} (\bar{E}, \bar{B}) \xrightarrow{d} 0$ 27 m/13 (I) Brute force! $(\vec{D}, \vec{H}) \xrightarrow{d} (\vec{P}, \vec{J}) \xrightarrow{d} 0$ $\vec{E} = \int \frac{dq'\hat{x}}{4\pi \epsilon^2 x^2}$ (II) Symmetry $\overline{\Phi}_{D} = Q$

$$E_{E} = 0$$
(IV) Refined brute
$$V = \int \frac{dq}{4\pi E_{h}} dt$$

(III) Elegant but cumbersome
$$\nabla \cdot \vec{D} = \rho$$
 $\nabla \times \vec{E} = \vec{O}$ Ch.4

(V) the WORKHORSE!!
$$-\nabla^2 V = P_{\varepsilon} \quad \text{Ch.3}$$

Equations of electrodyamics:



* Classical field equations - many equations, same solution:

Laplace/Poisson: $\nabla^2 V = 0 - \nabla \cdot \epsilon \nabla V = 0$

 $\frac{1}{C^2}\frac{\partial^2}{\partial C^2}(V,\vec{A})-\nabla^2(V,\vec{A})=\mu(\rho,\vec{J})$ Maxwell wave: ~ speed of light c= , charge/current density (p, f)

Heat equation: $C_{AF}^{\partial T} = K \nabla^2 T$ ~ temp T, cond. k, heat $\tilde{q} = -k\nabla u$ heat cap. C

 $\frac{\partial u}{\partial t} = D \nabla^2 u$ Diffusion eq: ~ concentration U, diffusion D , flow $D \nabla U$

 $\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} - \nabla^2 u = f$ Drumhead wave: ~ displacement w speed of sound c, force f

サンタヤナンサ=はみり Schrödinger: ~ prob amp 4, mass m, potential V, Planck to

* I-dimensional Laplace equation $\nabla^2 \vee = \frac{\partial^2 \vee}{\partial x^2} = 0$ $\frac{dV}{dx} = \int 0 dx = a$ $V = \int a dx = ax + b$

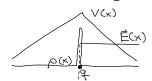
~ charge singularity between two regions:

~ a, b satisfy boundary conditions (Vo, Vi) or (Vo, VI)

~ mean field: $\sqrt{(x)} = \frac{1}{2} (\sqrt{(x-a)} + \sqrt{(x+a)})$

~ no local maxima or minima (stretches tight)

Vo Straight line



 $\nabla^2 \sqrt{\frac{\partial^2 \nabla}{\partial x^2} + \frac{\partial^2 \nabla}{\partial y^2}} = 0$ * 2-dimensional Laplace equation

~ no straighforward solution (method of solution depends on the boundary conditions)

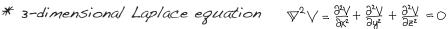
~ Partial Differential Equation (elliptic 2nd order)

~ chicken & egg: can't solve $\frac{\partial^2 V}{\partial x^2}$ until you know $\frac{\partial^2 V}{\partial y^2}$

~ solution of a rubber sheet

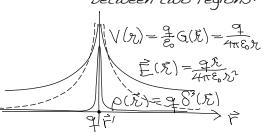
~ charge singularity between two regions:

 $V(\bar{r}) = \frac{1}{2\pi R} \int V dl$ ~ no local extrema -- mean field:



~ generalization of 2-d case

 $V(\vec{r}) = \frac{1}{4\pi R^2} \int_{\text{sphere}} V da$ ~ same mean field theorem:



Boundary Conditions

* and order PDE's classified in analogy with conic sections: replacing $rac{1}{2}$ with imes , etc

- a) Elliptic "spacelike" boundary everywhere (one condition on each boundary point) eq. Laplace's eq, Poisson's eq. $\nabla^2 V = 0 \qquad -\nabla \cdot \epsilon \nabla V = 0$
- b) Hyperbolic "timelike" (2 initial conditions) and "spacelike" parts of the boundary eg. Wave equation $\frac{1}{C}\frac{\partial^2}{\partial C}(V,\vec{A}) \nabla^2(V,\vec{A}) = \mu(\rho,\vec{J})$
- c) Parabolic 1^{st} order in time (1 initial condition) eg. Heat equation, Diffusion equation $C\frac{\partial T}{\partial t} = k\nabla^2 T - \frac{\partial u}{\partial t} = D\nabla^2 u$

* Uniqueness of a BVP (boundary value problem) with Poisson's equation:

if
$$V_1$$
 and V_2 are both solutions of $\nabla V = -V_{E_0}$ then let $U = V_1 - V_2$ $\nabla^2 U = 0$ integration by parts: $\nabla \cdot (U \nabla U) = U \nabla \cdot \nabla U + \nabla U \cdot \nabla U = U \nabla^2 U + (\nabla U)^2$

in region of interest:
$$\int_{\mathcal{V}} d\tilde{a} \cdot (U\nabla U) = \int_{\mathcal{V}} (U\nabla U) dt = \int_{\mathcal{V}} U\nabla^2 U + |\nabla U|^2 d\tau$$

note that: $\nabla^2 U = 0$ and $(\nabla U)^2 > 0$ always

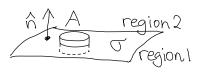
thus if
$$\int_{\mathcal{W}} da \cdot U \nabla U = \int_{\mathcal{W}} da \cdot U \frac{\partial U}{\partial n} = 0$$
 then $\int_{\mathcal{W}} |\nabla U|^2 d\tau = 0 \implies U = 0$ everywhere

- a) Dirichlet boundary condition: U = 0
- specify potential $V_1 = V_2$ on boundary
- b) Neuman boundary condition: $\frac{\partial U}{\partial n} = 0$
- specify $f(ux) \frac{\partial V}{\partial n} = \frac{\partial V_2}{\partial n}$ on boundary
- * Continuity boundary conditions on the interface between two materials

Flux:

D= EE

(shorthand
for now)



$$\Phi = \oint_{\mathcal{D}} \vec{D} \cdot d\vec{a} = \int_{\mathcal{D}} \sigma d\vec{a} = Q$$

$$\hat{N} \cdot (\vec{D}_2 - \vec{D}_1) A = \sigma \cdot A$$

$$\hat{N} \cdot (\vec{D}_2 - \vec{D}_1) = \sigma$$

$$-\frac{\partial V_2}{\partial \sigma} + \frac{\partial V_1}{\partial \sigma} = \frac{\sigma}{\varepsilon}$$

region 2 $\hat{S} = \hat{S} \times \hat{E} \cdot d\hat{a}$ $\hat{S} \cdot (\hat{E}_z - \hat{E}_z) \hat{I} = \hat{E} \cdot \nabla x \hat{E} \cdot d\hat{a}$

$$\frac{1}{\sqrt{|\vec{E}_1 - \vec{E}_1|}} = t \cdot \nabla \times \vec{E} \cdot |\omega|
\hat{\nabla} \times (\vec{E}_2 - \vec{E}_1) = 0
V_2 = V_1$$

* the same results obtained by integrating field equations across the normal

$$\nabla \cdot \vec{D} = P/\epsilon_{o}$$

$$\int_{-\infty}^{\infty} dn \left(\frac{\partial D_{n}}{\partial n} + \frac{\partial D_{s}}{\partial s} + \frac{\partial D_{t}}{\partial t}\right) = \int_{-\infty}^{\infty} dn \, \sigma \, \delta(n)$$

$$\int_{-\infty}^{\infty} dn \left(\frac{\partial D_{n}}{\partial n} + \frac{\partial D_{s}}{\partial s} + \frac{\partial D_{t}}{\partial t}\right) = \sigma$$

$$\nabla x \vec{E} = \vec{K}_e S(n) \qquad \nabla x \vec{E} = \begin{vmatrix} \hat{s} & \hat{t} & \hat{n} \\ \partial_s & \partial_e \partial_n \end{vmatrix}$$

$$\int dn \left(\hat{t} \frac{\partial E_s}{\partial n} - \hat{s} \frac{\partial E_t}{\partial n} \right) = \int dn \vec{K}_e S(n)$$

$$\hat{h} \times \Delta \vec{E} = \vec{K}_e = 0$$

~ opposite boundary conditions for magnetic fields: $\hat{n} \cdot \Delta \hat{B} = 0$ $\hat{n} \times \Delta \hat{H} = \hat{K}$