University of Kentucky, Physics 416G Problem Set #2, Rev. A, due Wednesday, 2014-09-17

- 1. Curvilinear coordinates: the coordinate basis $\mathbf{b}_i \equiv \partial \mathbf{r}/\partial q^i$ and reciprocal basis $\mathbf{b}^i \equiv \nabla q^i = \partial q^i/\partial \mathbf{r}$ are the two natural dual bases to describe components of a vector field in curvilinear coordinates (q^1, q^2, q^3) . For orthogonal systems, we use the single orthonormal basis $\hat{\mathbf{e}}_i = \mathbf{b}_i/h_i = \mathbf{b}^i h_i$, where $h_i = |\mathbf{b}_i| = 1/|\mathbf{b}^i|$ is a scale factor. Note that these basis vectors change from one point to the next. Calculate each of the following in both cylindrical and spherical coordinates.
 - a) Calculate $b_i = (b_s, b_\phi, b_z)$ as functions of $q^i = (s, \phi, z)$ and (b_r, b_θ, b_ϕ) as functions of (r, θ, ϕ) .
- b) Calculate the resulting scale factors h_i to get unit vectors in both coordinate systems. Write out the basis transformation matrix R for these vectors, i.e. $(\hat{s}, \hat{\phi}, \hat{z}) = (\hat{x}, \hat{y}, \hat{z})R$.
- c) Construct the transformation matrices between unit bases, by considering rotations $R_z(\phi)$ (rotation by an angle ϕ about the z-axis) and $R_{\phi}(\theta)$ and compare with part b.
 - d) Calculate the reciprocal vectors $(\boldsymbol{b}^s, \boldsymbol{b}^\phi, \boldsymbol{b}^z)$ and $(\boldsymbol{b}^r, \boldsymbol{b}^\theta, \boldsymbol{b}^\phi)$. Show that $\boldsymbol{b}_i \cdot \boldsymbol{b}^j = \delta_i{}^j$ in general.
 - e) Calculate the metric $g_{ij} = \mathbf{b}_i \cdot \mathbf{b}_j$ and reciprocal $g^{ij} = \mathbf{b}^i \cdot \mathbf{b}^j$ in terms of h_i .
- f) Calculate the general line element $d\mathbf{l} = \mathbf{b}_i dq^i$, area element $d\mathbf{a} = \frac{1}{2}d\mathbf{l} \times d\mathbf{l}$, and volume element $d\tau = \frac{1}{6}d\mathbf{l} \cdot d\mathbf{l} \times d\mathbf{l}$ in cylindrical and spherical coordinates. These products are not zero but have 2 [or 6] identical terms, because differentials anticommute.
- **g)** Apply the formulas $\nabla f = \frac{\hat{e}_i}{h_i} \frac{\partial}{\partial q^i} f$, $\nabla \times \mathbf{A} = \frac{\hat{e}_i}{h_j h_k} \frac{\partial}{\partial q^j} h_k A_k$, and $\nabla \cdot \mathbf{B} = \frac{1}{h_1 h_2 h_3} \frac{\partial}{\partial q^k} h_i h_j B_k$, for i, j, k cyclic, to cylindrical and spherical coordinates. Compare with Griffiths, inside front cover.

Bonus: Calculate the derivatives of the basis vectors along coordinate lines, $\Gamma_{ij} = \Gamma_{ij}{}^k \boldsymbol{b}_k = \partial \boldsymbol{b}_i/\partial q^j = \partial^2 \boldsymbol{r}/\partial q^i \, \partial q^j$. These *Christoffel symbols* and are needed to calculate derivative of vector fields in curvilinear coordinates.

- **2.** The **Hodge dual operator** * converts between scalar/vector and pseudo-scalar/vector differentials according to the definitions $*1 = dx \, dy \, dz = d\tau$, $*d\tau = *dx \, dy \, dz = 1$, $*dx^i = \frac{1}{2} \epsilon_{ijk} dx^j dx^k$, and $*dx^i dx^j = \epsilon_{ijk} dx^k$. The factor $\frac{1}{2}$ removes identical terms.
- a) Calculate (*dx, *dy, *dz) and (*dy dz, *dz dx, *dx dy) to show that *dl = da and *da = dl. What is the equivalent operation in HW1 #2?
- **b)** The codifferential operator δ is defined by $\delta \equiv (-1)^p * d *$, where p is the dimension of the differential acted upon $(p=0 \text{ for scalars}, p=1 \text{ for } d\mathbf{l}, p=2 \text{ for } d\mathbf{a}, \text{ and } p=3 \text{ for } d\tau)$. Show
 - i) $\delta f = 0$ for all scalar functions f,
- iii) $\delta(\mathbf{A} \cdot \mathbf{da}) = (\nabla \times \mathbf{A}) \cdot \mathbf{dl}$, and
- ii) $\delta(\mathbf{A} \cdot \mathbf{dl}) = -\nabla \cdot \mathbf{A}$ for a vector field \mathbf{A} ,
- iv) $\delta(f d\tau) = -(\nabla f) \cdot da$.

Note that δ is the adjoint of d in that it switches between divergence and curl, etc.

c) Show that $-\nabla^2 f = -\delta df = -(d\delta + \delta d)f$ for the Laplacian of a scalar function f, and likewise, $(\nabla^2 \mathbf{A}) \cdot d\mathbf{l} = -(d\delta + \delta d)(\mathbf{A} \cdot d\mathbf{l})$ for the Laplacian of a vector field. Note that by mixing differentials and codifferentials, it possible to generate nontrivial second derivatives. Interpret each [co]differential (d, δ) in terms of its corresponding vector derivative (∇) .

Also, Griffiths 3ed[4ed] chapter 1, problems #13[13], 19[20], 21[22], 25[26], 38[39], 39[40], 40[41], 42[43].