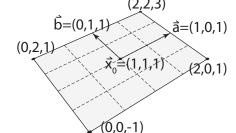
University of Kentucky, Physics 416G Problem Set #3, Rev. B, due Friday, 2014-09-26

- 1. a) Plot a 2-D graph of the function h(x,y) = 2xy by drawing level curves in the xy-plane.
 - **b)** Plot a 3-D graph of the 2-D function h(x,y), ie. the surface $\{(x,y,z) \mid z=h(x,y)\}$.
- c) Calculate the gradient of h at all points, and also the divergence and curl of the gradient. Plot the field lines and equipotentials of the gradient. Note that the equipotentials are curves, not surfaces, since h(x, y) is 2-dimensional. Bonus: Calculate an equation for field line curves.
- d) Construct a 3-D function g(x, y, z) which has z = h(x, y) as one level surface. Calculate the gradient of this function to obtain a normal vector to the surface z = h(x, y) at all points on the surface. Compare your answer to the normal of the surface calculated using the cross product (hint: calculate da on the surface).
- e) Show that there is a linear coordinate transformation $(x,y) \to (x',y')$ that transforms the function $h'(x',y') = y'^2 x'^2$ into h(x,y). We will find that both of these functions are m=2 cylindrical harmonics.
- f) Show that $h_1(x,y)=2xy$ and $h_2(x,y)=y^2-x^2$ form a basis for all functions which can be generated from h_1 and h_2 by rotating the coordinates (x,y) by an angle θ via the transformation $\mathbf{r}'=R_\theta\,\mathbf{r}$, i.e. $\begin{pmatrix} x'\\y' \end{pmatrix}=\begin{pmatrix} c_\phi & -s_\phi\\s_\phi & c_\phi \end{pmatrix}\begin{pmatrix} x\\y \end{pmatrix}$, where $\begin{pmatrix} c_\phi & -s_\phi\\s_\phi & s_\phi = \sin\phi \end{pmatrix}$.
- g) Verify Stokes' theorem $\oint_{\partial R} \boldsymbol{v} \cdot d\boldsymbol{l} = \int_{R} \boldsymbol{\nabla} \times \boldsymbol{v} \cdot d\boldsymbol{a}$ using the vector field $\boldsymbol{v}(x,y,z) = \hat{\boldsymbol{x}}yz$ over the surface $z = h_1(x,y)$, where $x^2 + y^2 < 1$.
- **2.** a) Integrate $\int_{\mathcal{S}} \boldsymbol{v} \cdot \boldsymbol{da}$ where $\boldsymbol{v} = \hat{\boldsymbol{x}} x^2 + \hat{\boldsymbol{y}} 2yz + \hat{\boldsymbol{z}} xy$, and \mathcal{S} is the parallelogram in the figure to the right. Hint: remember the parameterization of HW1 #1.



- **b)** Integrate $\oint_{\partial S} \boldsymbol{v} \cdot d\boldsymbol{l}$ along the boundary of S.
- $\mathbf{c})$ Verify Stokes' theorem for the integral in part b.
- 2' [alternate or bonus] Fundamental Theorem of Differentials: In class we discussed an extension of the Fundamental Theorem of Calculus in higher dimensions: $d \int_n \omega + \int_n d\omega = \omega$, where n is a 'radial' coordinate, and \int_n is an indefinite integral starting at n=0. This theorem encompases both the Poincaré lemmas (indefinite integral: potential theory), and the boundary theorems (definite integral: gradient, curl, divergence theorems).
- a) Show that this theorem reduces to the FTC for both functions f(x) and distributions $\rho(x)dx$ in one dimension. What happens to the constant of integration for indefinite integrals?
- b) Apply this theorem to calculate the potential V of an conservative field E, ie. $E = -\nabla V$ when $\nabla \times E = 0$. How does this relate to Stokes' theorem?
- c) Apply this theorem to calculate the potential \boldsymbol{A} of a solenoidal field \boldsymbol{B} , ie. $\boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A}$ when $\boldsymbol{\nabla} \cdot \boldsymbol{B} = 0$. Compare your answer with Griffiths 3ed[4ed] problem 5.51[53]. How does this relate [if at all] to Gauss' theorem?

Also, Griffiths 3ed[4ed] Ch. 1, #35[36], 44[45], 45[46], 46[47], 47[48], 48[49], 60[61], 61[62].