University of Kentucky, Physics 416G
Problem Set #7, Rev. A, due Friday, 2014-11-07

1. Sturm-Liouville equation. In class we saw that the Fourier series sin(kz) and cos(kx), and
Legendre polynomials Py(cos @) are all orthogonal. This holds in general for a large class of ODEs,
including those from separation of variables of the Laplacian. We will prove this result using the
same technique used for symmetric matrices (see the class notes on eigenvectors).

Let y1(z) and y2(x) be two solutions (eigenfunctions) of the differential equation L[y;] = \; y; with
real eigenvalues \;, where L is a linear differential operator of the form
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acting on the function y(z) with boundary conditions y(a) = y(b) = 0. We will show that these
eigenfunctions are orthogonal,

b
<y1‘y2> = / wdx Y1Yz = 0 if )\1 75 )\2. (2)

Note that L is just a shorthand for the above derivatives, but is analogous to a matrix operator,
and the inner product (yi|y2) is also a shorthand for the above integral, which is analogous to the
vector dot product. y1, ¥2, p, ¢, and w are all functions of z, and A; and Ag are real numbers.

a) Show by integration of parts that ff Y1 %ygdm =— ff yQ%yleL‘.

b) Extend part a) to show that f; Y1 d%p%ygdx = ff yQ%p%yld:ﬂ. Note that each derivative
operator acts on everything to the right.

c) Use part b) to show that f; wdx y1 L[ya] — f; wdx yo L[y1] = 0. We say that the operator L is
self-adjoint with respect to the weight wdx. It is the analog of a symmetric matrix.

d) Replace each operator in part c) with its eigenvalues, using L[y;] = \; y; and factor out the
inner product (yi|ya), to conclude that y; and ys are orthogonal if A\; # As.

Bonus: give other examples of self-adjoint operators with orthogonal eigenfunctions, specifying
the integration interval and weight function associated with each.

2. A spherical capacitor of radius R is made of two hemispherical conductors separated by a
negligible gap. The top hemisphere is held at potential 4V and the bottom hemisphere at —Vj.
Evaluate the first two non-zero terms in each case.

a) Calculate the potential everywhere inside and outside the sphere. Note that both regions must
be solved indpendently, because of the “external” boundary condition V = £V at r = R.

b) Calculate the surface charge density on both the inside and outside of the sphere, and integrate
the total charge on either hemisphere to determine the capacitance.

c) Draw the equipotentials and field lines, demonstrating the dominant features of the lowest
non-zero multipole, both inside and outside the sphere.

Also, Griffiths 3ed[4ed] Ch. 3, #15[16], 23[24], 24[25].
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