University of Kentucky, Physics 416G Problem Set #8, Rev. A, due Friday, 2014-11-14

- 1. We will use a spherical boundary value problem to develop a more systematic derivation of the multipole expansion than that presented in the text. Consider the potential $V(r,\theta)$ both inside and outside a spherical shell of radius r' due to a ring of total charge q on the shell at polar angle $\theta = \theta'$. In the limit $\theta' \to 0$, it is a point charge at the top of the sphere.
- a) Write down a formula for $\sigma(\theta)$ of the ring charge using a delta function $\delta(\theta \theta')$. Hint: make sure that $\int \sigma da = q$ if the region includes the ring charge, and 0 otherwise. In the same way, express the surface charge as a function of $x = \cos \theta$. Confirm the change-of-variables formula for delta functions: $\delta(\theta - \theta')d\theta = \delta(x - x')dx$ where $x' = \cos \theta'$.
- b) Solve for $V(r,\theta)$ both inside and outside the shell due to a uniform ring of charge q on the shell at the angle $\theta = \theta'$. Compare your answer for a point charge at the north pole $(\theta' = 0)$ with $V(r) = q/4\pi\epsilon_0 \lambda$ to derive the addition formula of Griffiths Eq. 3.94.
- c) Substitute $q \to \int dq'$ to obtain the general multipole expansion for an azimuthally symmetric charge distribution with multipoles $Q_{\mathrm{ext,int}}^{(\ell)}$ discussed in class:

$$V_{\rm ext}(r,\theta) = \frac{1}{4\pi\epsilon_0} \sum_{\ell=0}^{\infty} Q_{\rm int}^{(\ell)} \frac{P_{\ell}(\cos\theta)}{r^{\ell+1}} \qquad \text{where} \qquad Q_{\rm int}^{(\ell)} = \int dq' r'^{\ell} P_{\ell}(\cos\theta') \tag{1}$$

$$V_{\text{ext}}(r,\theta) = \frac{1}{4\pi\epsilon_0} \sum_{\ell=0}^{\infty} Q_{\text{int}}^{(\ell)} \frac{P_{\ell}(\cos\theta)}{r^{\ell+1}} \quad \text{where} \quad Q_{\text{int}}^{(\ell)} = \int dq' r'^{\ell} P_{\ell}(\cos\theta')$$

$$V_{\text{int}}(r,\theta) = \frac{1}{4\pi\epsilon_0} \sum_{\ell=0}^{\infty} Q_{\text{ext}}^{(\ell)} r^{\ell} P_{\ell}(\cos\theta) \quad \text{where} \quad Q_{\text{ext}}^{(\ell)} = \int dq' \frac{P_{\ell}(\cos\theta')}{r'^{\ell+1}}$$

$$(2)$$

Note that the external multipole potential is only valid outside the entire charge distribution, while the internal multipole potential is only valid completely inside the charge distribution.

- d) Identify monopole, dipole, and quadrupole terms, and compare with Griffiths. Sketch equipotentials and field lines of both the internal and external dipole. Match each multipole with the corresponding coefficient A_{ℓ} or B_{ℓ} in the general solution from separation of variables.
- 2. Calculate the (external) quadrupole tensor of two dipoles $\pm p$ separated by a displacement d (pointing from $-\mathbf{p}$ to $+\mathbf{p}$). Consider two cases: a) $\mathbf{p} = p\hat{\mathbf{x}}$ and $\mathbf{d} = d\hat{\mathbf{y}}$; and b) $\mathbf{p} = p\hat{\mathbf{x}}$ and $\mathbf{d} = d\hat{\mathbf{x}}$. The other cases follow the same pattern.

Hint: construct each dipole p with two opposite charges separated appropriately, and calculate the quadrupole moment of all four point charges.

Bonus: a) calculate the general formula for Q(p,d); b) compare and contrast the quadrupole tensor Q with the moment of inertia tensor \mathcal{I} ; c) compare with the hydrogen atom 3d orbitals.

Also, Griffiths 3ed[4ed] Ch. 3, #33[36], 38[44], 41[47], bonus: 45[52], 49[56].