University of Kentucky, Physics 416G Problem Set #9, Rev. A, due Monday, 2014-11-24

- 1. The Clausius-Mossotti relation between atomic polarizability α ($\mathbf{p} = \alpha \mathbf{E}$ in a linear dielectric) and electric susceptibility χ_e ($\mathbf{P} = \epsilon_0 \chi_e \mathbf{E}$ in the same medium).
- a) The simplest relation can be derived by ignoring the contribution from individual dipoles to E. Using the definition of P, explain why P = Np, where N is the number density of molecules (number/volume). Show that in this case $N\alpha = \epsilon_0 \chi_e$.
- b) Correct for the fact a dipole does not feel its own field. Thus the definition of polarizability in a dielectric material must be modified to $\mathbf{p} = \alpha \mathbf{E}_0$, where \mathbf{E}_0 is the macroscopic field due to everything but \mathbf{p} . Calculate \mathbf{E}_0 at the location of \mathbf{p} as a function of the macroscopic field \mathbf{E} and susceptibility χ_e assuming that \mathbf{p} is at the center of a bubble of radius R (the size of the molecule) inside the dielectric material. Hint: see example 4.2 and problem 4.16 [both editions].
- c) Using the modified equation from part a), $N\alpha E_0 = \epsilon_0 \chi_e E$, and part b), derive the relation $N\alpha = \epsilon_0 \chi_e \frac{3}{3+\chi_e} = 3\epsilon_0 \frac{\epsilon_r 1}{\epsilon_r + 2}$. Note this reduces to the naïve relation as $\chi_e \to 0$.
- d) Use part a) to compare the α and χ_e for elements which appear in both tables 4.1 and 4.2. Calculate the fractional correction term $\frac{3}{3+\chi_e}$ derived in part c).
- 2. The Langevin formula. In this problem we calculate the electric susceptibility χ_e of a polar material, composed of molecules with permanent dipole moment p. While the dipole has a tendency to align along the total field E, thermal agitations prevent perfect alignment. From statistical mechanics, the number of atoms in state i of energy U_i is proportional to the Boltzman factor $w = e^{-U_i/kT}$, where k is the Boltzman constant and T the temperature of the system. Thus colder systems are more likely to settle into the lowest energy state. In our case, the state of a dipole in an electric field is given by its rotational direction $i \equiv (\theta, \phi)$ with respect to the field $E = E\hat{z}$.
 - a) Calculate the potential energy $U(\theta)$ of the dipole p in the field E.
- **b)** By considering the solid angle of a ring of constant energy (ie. constant θ), show that the number of states dn of energy between $U(\theta)$ and $U(\theta + d\theta)$ is proportional to $\sin \theta d\theta$. The ratio $g = \frac{dn}{d\theta}$ is called the degeneracy of states, the density of states, or the phase space.
- c) Calculate the average energy $\langle U \rangle \equiv \int dn \, w(\theta) U(\theta) / \int dn \, w(\theta)$ of a dipole p in the field E, weighted by the Boltzman distribution $w(\theta)$.
- d) Calculate the weighted average of dipole moment along the field $\langle p_z \rangle$ of $\langle p \cos \theta \rangle$ as a function of the electric field E and temperature T, also weighted by the Boltzman distribution. Explain why $P = N \langle p_z \rangle$ and show that $P = Np[\coth(pE/kT) (kT/pE)]$. Graph this as a function of E.
- e) In the limit where $pE \ll kT$, determine the linear relationship between E and P to determine the susceptibility χ_e . Calculate χ_e for liquid and vapor water, using $p = 3.8 \times 10^{-9}$ e cm.

Also, Griffiths 3ed[4ed] Ch. 4, #4[4], 5[5], 6[6], 7[7], 8[8], 10[10], 14[14].