University of Kentucky, Physics 416G
 EXAM 1, 2010-09-20

Instructions: The exam is closed book and timed (50 minutes). Show all steps of calculations. Be careful to pace yourself; you may want to set up all integrals before evaluation. [75 pts total]
[25 pts] 1. Short calculations.
a) $(\overrightarrow{\boldsymbol{A}} \cdot \nabla) \overrightarrow{\boldsymbol{r}} \quad$ where $\overrightarrow{\boldsymbol{A}}$ is constant
b) $\boldsymbol{\nabla} \sin (\overrightarrow{\boldsymbol{k}} \cdot \overrightarrow{\boldsymbol{r}}) \quad$ where $\overrightarrow{\boldsymbol{k}}$ is constant
c) $\int_{-\infty}^{\infty} \ln (x+3) \delta(x+2) d x$
d) Calculate the angle θ.

e) Transform $\overrightarrow{\boldsymbol{F}}=\left(x^{2}+y^{2}\right) \hat{\boldsymbol{x}}-x \hat{\boldsymbol{y}}$ into cylindrical coordinates.
[15 pts] 2. Calculate $\int_{\mathcal{V}} \nabla \cdot \sin \theta \hat{\boldsymbol{\theta}} d \tau$, where \mathcal{V} is a ball of radius $R=2$ about the origin.
[20 pts] 3. Calculate $\int_{\mathcal{S}} \boldsymbol{\nabla} \times x \hat{\boldsymbol{y}} \cdot \overrightarrow{\boldsymbol{d} \boldsymbol{a}}$, where \mathcal{S} is the side (not top) of the paraboloid $z=x^{2}+y^{2}$ and $s<1$, $z<1$, using the inward normal.

[15 pts] 4. Calculate $\int_{\mathcal{P}} x \hat{\boldsymbol{y}} \cdot \overrightarrow{\boldsymbol{d} l}$ where \mathcal{P} is the rim of the paraboloid, $x^{2}+y^{2}=1, z=1$, going counter-clockwise looking from the top.

