University of Kentucky, Physics 416G EXAM 1, 2010-09-20

Instructions: The exam is closed book and timed (50 minutes). Show all steps of calculations. Be careful to pace yourself; you may want to set up all integrals before evaluation. [75 pts total]

[25 pts] 1. Short calculations.

- a) $(\vec{A} \cdot \nabla)\vec{r}$ where \vec{A} is constant b) $\nabla \sin(\vec{k} \cdot \vec{r})$ where \vec{k} is constant
- c) $\int_{-\infty}^{\infty} \ln(x+3) \,\delta(x+2) \,dx$ d) Ca

d) Calculate the angle θ .

e) Transform $\vec{F} = (x^2 + y^2)\hat{x} - x \hat{y}$ into cylindrical coordinates.

[15 pts] 2. Calculate $\int_{\mathcal{V}} \nabla \cdot \sin \theta \,\hat{\theta} \, d\tau$, where \mathcal{V} is a ball of radius R = 2 about the origin.

[20 pts] 3. Calculate $\int_{\mathcal{S}} \nabla \times x \, \hat{y} \cdot \vec{da}$, where \mathcal{S} is the side (not top) of the paraboloid $z = x^2 + y^2$ and s < 1, z < 1, using the inward normal.

[15 pts] 4. Calculate $\int_{\mathcal{P}} x \hat{y} \cdot d\vec{l}$ where \mathcal{P} is the rim of the paraboloid, $x^2 + y^2 = 1$, z = 1, going counter-clockwise looking from the top.