Section 1.1.5 - Linear Operators

* Linear Transformation
~ function which preserves linear combinations
\sim determined by action on basis vectors (egg-crate)
\sim rows of matrix are the image of basis vectors
\sim determinant $=$ expansion volume (triple product)
\sim multilinear (2 sets of bases) - a tensor
* Change of coordinates
~ two ways of thinking about transformations both yield the same transformed components
~ active: basis fixed, physically rotate vector
~ passive: vector fixed, physically rotate basis
* Transformation matrix (active) - basis vs. components

$$
\begin{aligned}
& (\vec{a} \vec{b} \vec{c})=(\hat{x} \hat{y} \hat{z})\left(\begin{array}{lll}
a_{x} & b_{x} & c_{x} \\
a_{y} & b_{y} & c_{y} \\
a_{z} & b_{z} & c_{z}
\end{array}\right) \\
& \vec{x}=(\vec{a} b \vec{c})\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=(\hat{x} \hat{y} \hat{z})\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
a_{x} & b_{x} & c_{x} \\
a_{y} & b_{y} & c_{y} \\
a_{z} & b_{z} & c_{z}
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right) \\
& \vec{e}^{\prime}=\vec{e} R \\
& \vec{X}=\widetilde{\mathbb{E}}^{\prime} \mathbb{X}^{\prime}=\widetilde{\widetilde{\mathbb{E}}} \underbrace{\widetilde{R} \mathbb{X}^{\prime}}=\overrightarrow{\mathbb{e}} \underbrace{\mathbb{X}}=\vec{x} \\
& \stackrel{W}{6}^{\prime}=\stackrel{\text { ® }}{ } \text { R } \\
& X^{\prime}=R^{-1} \mathbb{X}
\end{aligned}
$$

active
transformation

* Orthogonal transformations
$\sim R$ is orthogonal if it 'preserves the metric' (has the same form before and after)

$$
\begin{aligned}
& \vec{e}^{\top} \cdot \vec{e}=\binom{\hat{x}}{\hat{y}} \cdot(\hat{x} \hat{y})=\left(\begin{array}{ll}
\hat{x} \cdot \hat{x} & \hat{x} \cdot \hat{y} \\
\hat{y} \cdot \hat{x} & \hat{y} \cdot \hat{y}
\end{array}\right)=\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)=g \quad \vec{e}^{\prime \top} \cdot \vec{e}^{\prime}=\binom{\vec{a}}{\vec{b}} \cdot\left(\begin{array}{ll}
\vec{a} \vec{b})
\end{array}=\left(\begin{array}{ll}
\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\
\vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b}
\end{array}\right)=g^{\prime}\right. \\
& \vec{e}^{\prime}=\vec{e} R \quad \vec{e}^{\top} \cdot \vec{e}^{\prime}=\vec{R}^{\top} \vec{e}^{\top} \cdot \vec{e} R=R^{\top} g R=g^{\prime} \quad g=g^{\prime} \quad R^{\top} g R=g \\
& \sim \text { equivlent definition in terms of components: }
\end{aligned}
$$

~ starting with an orthonormal basis: $\quad g=I \quad g_{i j}=\delta_{i j} \quad R^{\top} R=I \quad R^{-1}=R^{\top}$

* Symmetric / antisymmetric vs. Symmetric / orthogonal decomposition
~ recall complex numbers $\quad u=\rho+i \phi \quad \rho^{*}=\rho \quad(i \phi)^{*}=-i \phi$

$$
e^{u}=e^{\rho+i \phi}=r e^{i \phi} \quad\left|e^{i \phi}\right|^{2}=e^{-i \phi} e^{i \phi}=e^{i 0}=1
$$

~ similar behaviour of symmetric / antisymmetric matrices

$$
\begin{aligned}
& M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & (b+c) / 2 \\
(b+c) / 2 & d
\end{array}\right)+\left(\begin{array}{cc}
0 & (b-c) / 2 \\
(c-b) / 2 & 0^{2}
\end{array}\right)=T+A \quad \begin{array}{l}
\text { A antisymmet } \\
e^{M}=1+M+\frac{1}{2!} M^{2}+\frac{1}{3!} M^{3}+\ldots \quad=e^{T+A} \neq e^{T} e^{A} \quad R=e^{A} \quad R^{T} R=\left(e^{A}\right)^{T} e^{A}=e^{A^{\top}+A}=e^{0}=I \\
S=e^{T}=e^{V W V^{-1}}=V e^{W} V^{-1} \quad \text { symmetric } \\
R \text { orthogonal } \\
\left.\operatorname{det}\binom{e^{\lambda_{1}}}{e^{\lambda_{2}}}=e^{\lambda_{1}} \cdot e^{\lambda_{2}} \ldots=e^{\lambda_{1}+\lambda_{2}+\ldots}=e^{\operatorname{tr}\left(\lambda_{r} \lambda_{2}\right.}\right) \quad \operatorname{det} e^{A}=e^{\operatorname{tr} A}=e^{0}=1
\end{array} l
\end{aligned}
$$

Eigenparaphernalia

* illustration of symmetric matrix 5 with eigenvectors v, eigenvalues λ

$$
\begin{aligned}
& S v=\lambda V \\
& \left(\begin{array}{ll}
2 & 1 \\
12
\end{array}\right)\binom{v_{1}}{v_{2}}=\lambda\binom{v_{1}}{v_{2}} \\
& \binom{21}{12}\binom{1}{0}=\binom{2}{1} \\
& \binom{21}{12}\binom{0}{1}=\binom{1}{2} \\
& \binom{21}{12}\binom{1}{1}=\binom{3}{3}=3\binom{1}{1} \\
& \binom{21}{12}\binom{1}{-1}=\binom{3}{3}=1\binom{1}{-1}
\end{aligned}
$$

* similarity transform - change of basis (to diagonalize A)

$$
S\left(v_{1} v_{2} \ldots\right)=\left(\vec{v}_{1} \vec{v}_{2} \ldots\right)\left(\pi_{1} \lambda_{2}\right) \quad S V=V W V^{-1}=V W V^{\top}
$$

* a symmetric matrix has real eigenvalues

$$
\begin{aligned}
S v & =\lambda v & v^{*} S v & =\lambda v^{* T} v \\
v^{*} T S & =v^{*} \lambda^{*} & v^{* T} S v & =\lambda^{*} v^{* T} v
\end{aligned} \quad \lambda=\lambda^{*}
$$

~ what about a antisymmetric/ orthogonal matrix?

* eigenvectors of a symmetric matrix with distinct eigenvalues are orthogonal

$$
\begin{aligned}
& V^{\top} S=\left(S^{\top} V\right)^{\top}=(S V)^{\top}=(\lambda V)^{\top}=V^{\top} \lambda \\
& \lambda_{1} V_{1} \cdot V_{2}=\left(V_{1}^{\top} S\right) V_{2}=V_{1}^{\top}\left(S V_{2}\right)=V_{1} \cdot V_{2} \lambda \\
& V_{1} \cdot V_{2}\left(\lambda_{1}-\lambda_{2}\right)=0 \quad \text { if } \lambda_{1} \neq \lambda_{2} \text { then } V_{1} \cdot V_{2}=0
\end{aligned}
$$

* singular value decomposition (SVD)
~ transformation from one orthogonal basis to another

$$
M=R S=\underbrace{R V} W V^{\top}=U W V^{\top}
$$

~ extremely useful in numerical routines
M arbitrary matrix
R orthogonal S symmetric W diagonal matrix V orthogonal (domain) U orthogonal (range)

