* differential operator
\sim ex. $u=x^{2} \quad d u=d x^{2}=2 x d x \quad d \equiv \lim _{\Delta \rightarrow 0} \Delta \approx 0$ or $d\left(\sin x^{2}\right)=\cos \left(x^{2}\right) d x^{2}=\cos x^{2} \cdot 2 x \cdot d x$
$\sim d f$ and $d x$ connected - refer to the same two endpoints

* scalar and vector fields - functions of position (\vec{r})
~ "field of corn" has a corn stalk at each point in the field
\sim scalar fields represented by level curves (ad) or surfaces (ad)
~ vector fields represented by arrows, field lines, or equipotentials
* partial derivative \& chain rule
~ signifies one varying variable AND other fixed variables
\sim notation determined by denominator; numerator along for the ride
\sim total variation split into sum of variations in each direction
$\frac{\partial u}{\partial x}\left(\frac{\partial u}{\partial x}\right)_{y, z} \partial_{x} u u_{, x} \quad \frac{\cdots}{\cdots}=\frac{d x}{\cdots} \frac{\cdots}{\partial x}+\frac{d y}{\cdots} \frac{\cdots}{\partial y}+\frac{d z}{\cdots} \frac{\cdots}{\partial z}$
* vector differential - gradient
~ differential operator, del operator

$$
\begin{aligned}
d T & =\frac{\partial T}{\partial x} d x+\frac{\partial T}{\partial y} d y+\frac{\partial T}{\partial z} d z \\
& =\underbrace{\left(\partial_{x}, \partial_{y}, \partial_{z}\right)}_{\nabla} T \cdot \underbrace{(d x, d y, d z)}_{\overrightarrow{d l}}
\end{aligned}
$$ or inifinite sum $=$ integral (Fundamental Thereon of calculus)

$$
\frac{d f}{d x}=\frac{d f}{d u} \frac{d u}{d x} \quad \int_{a}^{b} \frac{d f}{d x} d x=\int_{a}^{b} d f=\left.f\right|_{a} ^{b}
$$

\sim made finite by taking ratios (derivative or chain rule)

Higher Dimensional Derivatives

* curl - circular flow of a vector field

$$
\nabla \times \vec{V}=\left|\begin{array}{lll}
\hat{x} & \hat{y} & \hat{z} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
V_{x} & V_{y} & V_{z}
\end{array}\right|=\begin{array}{r}
\hat{x}\left(V_{z, y}-V_{y, z}\right) \\
+\hat{y}\left(V_{x, z}-V_{z, x}\right) \\
+\hat{z}\left(V_{y, x}-V_{x, y}\right)
\end{array}
$$

* divergence - radial flow of a vector field

$$
\nabla \cdot \vec{V}=\left(\partial_{x} \partial_{y} \partial_{z}\right)\left(\begin{array}{l}
V_{x} \\
V_{y} \\
V_{z}
\end{array}\right)=V_{x, x}+V_{y, y}+V_{z, z}
$$

* product rules
~ how many are there?
~ examples of proofs

$$
\begin{aligned}
& \vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b}) \\
& \vec{A} \times(\nabla \times \vec{B})=\sqrt{\nabla}(\vec{A} \cdot \vec{B})-\frac{\sqrt{B}}{\vec{B}}(\vec{A} \cdot \nabla) \\
& \nabla \times(\vec{A} \times B)=\frac{\sqrt{A}}{\vec{A}}(\nabla \cdot \vec{B})-\vec{B}(\nabla \cdot \vec{A})
\end{aligned}
$$

$$
\begin{aligned}
& \nabla(f g)=\nabla f \cdot g+f \cdot \nabla g \\
& \nabla(\vec{A} \cdot \vec{B})=\vec{A} \times(\nabla \times \vec{B})+(\vec{A} \cdot \nabla) \vec{B}+(\vec{B} \leftrightarrow \vec{A}) \\
& \nabla \times(f \vec{A})=\nabla f \times \vec{A}+f(\nabla \times \vec{A}) \\
& \nabla \times(\vec{A} \times \vec{B})=(B \cdot \nabla) A-B(\nabla \cdot A)-(\vec{B} \leftrightarrow \vec{A}) \\
& \nabla \cdot(f \vec{A})=\nabla f \cdot \vec{A}+f \nabla \cdot \vec{A} \\
& \nabla \cdot(\vec{A} \times \vec{B})=(\nabla \times \vec{A}) \cdot \vec{B}-\vec{A} \cdot(\nabla \times \vec{B})
\end{aligned}
$$

* second derivatives - there is really only ONE! (the Laplacian) $\nabla^{2} \equiv \nabla \cdot \nabla \equiv \partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}$ 1)

$$
\begin{aligned}
& \nabla \cdot(\nabla T)=\nabla^{2} T \\
& (\nabla \cdot \nabla) \vec{v}=\nabla^{2} \vec{v} \\
& \text { 5) } \begin{aligned}
\nabla^{2} & =\nabla_{11}^{2}+\nabla_{1}^{2} \\
& =\nabla(\mathbb{\nabla} \cdot-\nabla \times \nabla \times
\end{aligned},-\nabla \times{ }^{(\nabla)}
\end{aligned}
$$

~ eg: $\nabla^{2} T=0$ no net curvature - stretched elastic band \sim defined component-wise on v_{x}, v_{y}, v_{z} (only cartesian coords)
3), 5)
~ longitudinal I transverse projections

$$
\begin{aligned}
\nabla(\mathbb{\nabla} \cdot \vec{v}) & \equiv \nabla_{11}^{2} \vec{v} \\
-\nabla \times \nabla \times \vec{v} & \equiv-\nabla_{1}^{2} \vec{v}
\end{aligned}
$$

* unified approach to all higher-order derivatives with differential operator

1) $d^{2}=0$
2) $d x^{2}=0$
3) $d x d y=-d y d x$

+ differential (line, area, volume) elements
~ Gradient

$$
d f=f_{, x} d x+f_{1 y} d y+f_{, z} d z=\nabla f \cdot d \vec{l} \quad d \vec{l}=(d x, d y, d z)=d \vec{r}
$$

~ Curl

$$
\begin{aligned}
& d(\vec{A} \cdot d l)=d\left(A_{x} d x+A_{y} d y+A_{z} d z\right) \\
& =A_{x, x} d y d x+A_{x, y} d y d x+A_{x, z} d z d x \\
& +A_{y, x} d x d y+A_{y, y} d y d y+A_{y, z} d z d y \\
& \left.+A_{z, x} d x d z+A_{z, y} d y d z+A_{z, z} d z\right) d z \\
& =\left(A_{z, y}-A_{y, z}\right) d y d z+\left(A_{x, z}-A_{z, x}\right) d z d x+\left(A_{y, x}-A_{x, y}\right) d x d y \\
& d(\vec{A} \cdot d l)=(\nabla \times \vec{A}) \cdot d \vec{a} \\
& \quad d \vec{a}=(d y d z, d z d x, d x d y)=\frac{1}{2} \overrightarrow{d l} \times d \vec{l}=d^{2} \vec{r}
\end{aligned}
$$

~ Divergence

$$
\nabla f=\frac{d f}{d \vec{l}}=\frac{d f}{d \vec{r}}
$$

$$
\nabla \times \vec{A}=\frac{d(\vec{A} \cdot d \vec{l})}{d \vec{a}}=\frac{d(d \vec{r} \cdot \vec{A})}{d^{2} \vec{r}}
$$

$$
\begin{aligned}
& d(\vec{B} \cdot \overrightarrow{d a})=d\left(B_{x} d y d z+B_{y} d z d x+B_{z} d x d y\right) \\
& \quad=B_{x, x} d x d y d z+B_{x, y} d y d y d z+B_{x, z} d z d y d z \\
& \quad+B_{y, x} d x d z d x+B_{y, y} d y d z d x+B_{y, z} d z d z d x \\
& \quad+B_{z, x} d x d x d y+B_{z, y} d y d x d y+B_{z, z} d z d x d y \\
& =\left(B_{x, x}+B_{y, y}+B_{z, z}\right) d x d y d z \\
& \frac{d(\vec{B} \cdot \overrightarrow{d a})=}{\nabla} \cdot B \cdot d \tau \quad d \tau=\frac{1}{6} d l \cdot d \vec{l} \times d \vec{l}=d^{3} \vec{r} \\
& \frac{d(d \vec{r} \cdot \vec{A})}{d^{2} \vec{r}} \quad \nabla \cdot \vec{B}=\frac{d(\vec{B} \cdot d \vec{a})}{d \tau}=\frac{d\left(d^{2} \vec{r} \cdot \vec{B}\right)}{d^{3} \vec{r}}
\end{aligned}
$$

