Section 1.3 - Integration

Flux, Flow, and Substance

* Differential forms		Name	Geometrical picture	
	scalar: vector:	$\varphi^{(o)} = \varphi(x)$ $d e^{(0)} = \tilde{A} = \tilde{A} \cdot d\tilde{l} = A_x dx + A_y dx$		' level curves equipotentials (flow sheets)
	pseudovector:	$d \overline{\Phi}^{(2)} = \widetilde{B} = \widetilde{B} \cdot d \widetilde{a} = B_x d y d z + B$		
	pseudoscalar:	$dq^{(3)} = \tilde{p} = p d\tau = p dx dy dz$		boxes of substance
* Derivative d'				
	scalar:	$d\phi = \nabla \phi \cdot dt$	grad	same equipotential surfaces
	vector:	$d\tilde{A} = \nabla x \tilde{A} \cdot d\tilde{a}$	curl	flux tubes at end of sheets
	pseudovector:	$d\tilde{B} = \nabla \cdot B dc$	div	boxes at the end of flux tubes
	pseudoscalar:	$d\tilde{p} = 0$		
* Definite integral				
	scalar:			
	Vector:	$\mathcal{E} = \int_{\mathbf{P}} \tilde{\mathbf{A}} = \int_{\mathbf{P}} \tilde{\mathbf{A}} \cdot d\mathbf{I}$	flow	# of surfaces pierced by path
	pseudovector:	$\overline{\Phi} = \int_{S} \widetilde{B} = \int_{S} \overline{B} \cdot d\overline{a}$	flux	# of tubes piercing surface
	pseudoscalar:	$Q = \int_{V} \tilde{P} = \int_{V} dq$	subst	# of boxes inside volume
y			J=J·dā =0	$\tilde{p} = p d\tau = d\tilde{D}$
	$\Delta f = \int_{a}^{b} df = f(b) - f(a) = -$ $\int df = \Delta f = 0$ $df = \nabla f \cdot d\vec{l} \vec{E} \cdot d\vec{l} =$	$\mathcal{E}_{H} = \oint_{\partial R} \widetilde{H} = \int_{\mathcal{R}} \partial \widetilde{H} = \int \widetilde{J} =$	=I=+4	$ \begin{split} \overline{\Phi}_{D} &= \int_{S} \vec{D} \cdot d\vec{u} = \int_{S} \vec{D} = +2, \\ \overline{\Phi}_{D} &= \int_{R} \vec{D} = \int_{R} \vec{p} = Q = +4 \\ d\vec{D} &= d(\vec{D} \cdot d\vec{u}) = \nabla \cdot \vec{D} d\tau = p d\tau = \vec{p} \end{split} $
.4				

* Stoke's theorem

of flux tubes puncturing disk (S) bounded by closed path EQUALS # of surfaces pierced by closed path (DS) ~ each surface ends at its SOURCE flux tube

* Divergence theorem

of substance boxes found in volume (R) bounded by closed surface EQUALS # of flux tubes piercin the closed surface (DR) ~ each flux tube ends at its SOURCE substance box