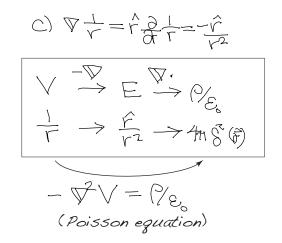
Green Functions G(x,x)

- * Green's functions are used to "invert" a differential operator ~ they solve a differential equation by turning it into an integral equation
- * You already saw them last year! (in Phy 232) ~ the electric potential of a point charge

$$\begin{split} & \Im(51: \quad \nabla \cdot \frac{\hat{r}}{r^2} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{1}{r^2} \right) = 0 \\ & \alpha \rangle \quad \frac{1}{r^2} \to \infty \quad \text{at} \quad r = 0 \quad \text{`singularity'} \\ & \beta \int \nabla \cdot \frac{\hat{r}}{r^2} d\tau = \oint d\bar{\alpha} \cdot \frac{\hat{r}}{r^2} = \oint d\Omega r^2 \frac{1}{r^2} = 4\pi \\ & \text{independent of volume if } \Theta \text{ inside} \\ & \text{thus} \quad \nabla \cdot \frac{\hat{r}}{r^2} = 4\pi S^3(\bar{r}) \end{split}$$



* Green's functions are the simplest solutions of the Poisson equation

$$G(\vec{r},\vec{r}) \equiv G(\mathfrak{H}) = \frac{-1}{4\pi\mathfrak{H}} = \nabla^2 S^3(\vec{\mathfrak{X}})$$

~ is a special function which can be used to solve Poisson equation symbolically using the "identity" nature of $S^3(\vec{r} - \vec{r}') = S^3(\vec{z})$

~ intuitively, it is just the "potential of a point source"

$$\nabla^2 G(\mathcal{H}) = \nabla \cdot \nabla \frac{-1}{4\pi \mathcal{H}} = \nabla \cdot \frac{\mathcal{L}}{4\pi \mathcal{L}^2} = \mathcal{S}^3(\mathcal{H}) \qquad \mathcal{I} = \mathcal{F} - \mathcal{F}^{\prime}$$

Let
$$V = \int_{V} G(x) \underbrace{\rho(\vec{r}')}_{\mathcal{E}_{o}} d\tau'$$
 (solution to Poisson's eq.)
 $\nabla^{2} V = \int_{V} \underbrace{\rho(\vec{r})}_{\mathcal{E}_{o}} \nabla^{2} G(\vec{r} - \vec{r}') d\tau' = \int_{V'} \underbrace{\rho(\vec{r}')}_{\mathcal{E}_{o}} S^{3}(\vec{r} - \vec{r}') d\tau' = -\underbrace{\rho(\vec{r}')}_{\mathcal{E}_{o}}$

* this generalizes to one of the most powerful methods of solving problems in E&M
~ in QED, Green's functions represent a photon 'propagator'
~ the photon mediates the force between two charges
~ it `carries' the potential from charge to the other

$$U = \int p V dt = \int p f p dt dt'$$

P P P'

Section 1.6 - Helmholtz Theorem

* orthogonal projections
$$P_{\parallel}$$
 and P_{\perp} : a vector \vec{n} divides the space \vec{X} into $\vec{X}_{\parallel n} \oplus \vec{X}_{\perp n}$
geometric view: dot product $\hat{h} \cdot \hat{\pi}$ is length of \vec{y} along \hat{h}
 $Projection operator: $P_{\parallel} = \hat{h} \hat{h}$. acts on $x: P_{\parallel} \hat{\pi} = \vec{\alpha}_{\parallel 1} = \hat{h} \hat{h} \cdot \hat{\pi}$.
 \sim orthogonal projection: $\hat{h} \times$ projects \perp to \hat{h} and rotates by $q0$
 $\hat{\chi}_{\perp} = -\hat{h} \times (\hat{h} \times \hat{\chi}) = P_{\perp} \hat{\pi}$
 $P_{\parallel} = \hat{h} \times \hat{h} \times \hat{\pi}$
 $P_{\parallel} + P_{\perp} = \hat{h} \hat{h} \cdot -\hat{h} \times \hat{h} \times = \mathbf{I}$
* longtudinal/transverse separation of Laplacian (Hodge decomposition)
 $\overrightarrow{\nabla F} = \hat{\mu}$
 \Rightarrow is there a solution to these equations for $\vec{F}(r)$
given fixed source fields $p(\hat{r})$ and $\vec{f}(\vec{r}) ? YES!$ (compare $\#\lambda\hat{h} \#$)
 $\sim proof: \quad \nabla^2 \vec{F} = \nabla \nabla \cdot \vec{F} - \nabla \times \nabla \times \vec{F}$
 \Rightarrow formally, $\vec{F} = -\nabla \left(-\nabla^2 (\overrightarrow{\nabla F}) + \nabla \times \left(-\nabla^2 (\overrightarrow{\nabla X} \overrightarrow{F})\right) - \frac{P_{\perp} \hat{\pi}}{\chi}$ are SOURCES
 \sim thus $\nabla^{-2} \hat{S}(\hat{k}) = -\frac{1}{4\pi r h} \equiv \hat{G}(\hat{k})$ (see next page) $\hat{G} = -\frac{1}{4\pi r k}$ is Green fn
 \sim use the \hat{S} -identity $p(\hat{r}) = \int dt' (\vec{\nabla}^2 \hat{S}(\hat{k})) \hat{f}(\hat{r}) = \int dt' \frac{d(\hat{r})}{4\pi r k} = \frac{1}{4\pi r k} \int \frac{d\alpha}{k}$
 $\vec{A}(\hat{r}) \equiv -\nabla^2 \hat{J}(\hat{r}) = \int dt' (-\nabla^2 \hat{S}(\hat{k})) \hat{f}(\hat{r}) = \int dt' \frac{d(\hat{r})}{4\pi r k} = \frac{4\pi}{4\pi r k} \int \frac{d\alpha}{k}$
 \sim thus any field can be decomposed into L/T parts $\vec{F} = -\nabla (+\nabla \times \vec{X} \vec{k})$ defined above
 $SCALAR POTENTIAL \bigvee$$

* Theorem: the following are equivalent definitions of an "irrotational" field:

a) $\nabla x \vec{F} = \vec{O} \quad curl-less$ b) $\vec{F} = -\nabla V$ where $V = \int \frac{d\tau' \vec{\nabla} \cdot \vec{F}}{4\pi r}$ c) $V(\vec{r}) = \int_{-\vec{F}}^{\vec{V}} \vec{F} \cdot \vec{J} \vec{J}$ is independent of path d $f \vec{F} \cdot \vec{l} = 0$ for any closed path * Gauge invariance:

if
$$\vec{F} = -\nabla V_1$$
 and also $\vec{F} = -\nabla V_2$
then $\nabla (V_2 - V_3) = 0$ and $V_2 = V_1 = V_6$ is constant
("ground potential")

VECTOR POTENTIAL A

- * Theorem: the following are equivalent definitions of a "solenoidal" field:
 - a) ∇•Ê=0 divergence-less b) $\not\models = \nabla x \vec{A}$ where $\vec{A} = \int \frac{d\tau \nabla x \vec{F}}{4\tau v r}$ C) $?=\int_{S} \vec{F} \cdot d\vec{a}$ with ∂S fixed is independent of surface d) $\oint \vec{F} \cdot d\vec{a} = 0$ for any closed surface

* Gauge invariance:
if
$$\vec{F} = \nabla \lambda \vec{A}_1$$
 and also $\vec{F} = \nabla \lambda \vec{A}_2$
then $\nabla x (A_2 - A_1) = 0$ and $A_2 - A = \nabla \lambda (r)$
("gauge transformation")