Section 3.3.1 - Separation of Variables (Cartesian)

* goal: solve Lapalce's equation (a single $P D E$) by converting it into one $O D E$ per variable method: separate the equation into separate terms in x, y, z start by factoring the solution $V(x, y, z)=X(x) Y(y) Z(z)$
trick: if $f(x)=g(y)$ where $f(x)$ is independent of y and $g(y)$ is independent of x then they must both constant
endgame: form the most possible general solution as a linear combination of all possible products of solutions in each variable.
Solve for unique values of the coefficients using the boundary conditions
analogy: the set of all solutions forms a vector space the basis vectors are independent individual solutions
* Example: semi-infinite strip with non-zero voltage at one end

$$
\begin{aligned}
& V(x, y)=X(x) \cdot Y(y) \\
& \underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}}_{f(x)=k^{2}}+\underbrace{\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}}_{g(y)=-k^{2}}=0 \\
& X^{\prime \prime}-k^{2} X=0 \quad Y_{0} \\
& X=A e^{k X}+B e^{-k x} \quad Y=k^{2} Y=0 \\
& Y=C \sin (k y)+D \cos (k y)
\end{aligned}
$$

\sim boundary conditions $(B C)$:

$$
\begin{aligned}
& \text { 1) } V(\infty, y)=0 \Rightarrow A=0 \\
& \text { 2) } V(x, 0)=0 \Rightarrow D=0 \\
& \text { 3) } V(x, a)=0 \Rightarrow \sin (k a)=0 \quad k_{n}=\frac{n \pi}{a} \\
& V(x, y)=\sum_{n=1}^{\infty} c_{n} e^{-k_{n} x} \sin \left(k_{n} y\right)
\end{aligned}
$$

4)

$$
\begin{aligned}
& V_{0}(y)=\sum_{n=1}^{\infty} c_{n} \sin \left(k_{n} y\right) \\
& \begin{array}{c}
\int_{0}^{a} \sin \left(k_{m} y\right) V_{0}(y) d y=\sum_{n=1}^{\infty} c_{n} \int_{0}^{a} \sin \left(k_{n} y\right) \cdot \sin \left(k_{m} y\right) d y \\
=\sum_{n=1}^{\infty} c_{n} \int_{0}^{a} \cos \left(\frac{(n-m) \pi}{a} y\right)-\cos \left(\frac{(n+m) \pi}{a} y\right) d y . \\
=\sum_{n=1}^{\infty} c_{n} \frac{a}{2} \delta_{n m}=\frac{a}{2} c_{m}
\end{array}
\end{aligned}
$$

~ if $V_{0}(y)=$ const $=V_{0}$ then

$$
\begin{aligned}
& C_{n}=\frac{2}{a} \int_{0}^{a} \sin \left(\frac{n \pi y}{a}\right) V_{0} d y=\left\{\begin{array}{c}
0 \text { if } n \text { even } \\
\frac{4 V_{0}}{n \pi} \text { if } n \text { odd }
\end{array}\right. \\
& V(x, y)=\sum_{n=1,3,5, \ldots}^{\infty} \frac{4 V_{0}}{n \pi} e^{-\frac{n \pi x}{a}} \sin \left(\frac{n \pi y}{a}\right)
\end{aligned}
$$

(Fourier decomposition)

* Vector Analogy:

$$
\begin{array}{ll}
\hat{e}_{i} \cdot \vec{V}=\hat{e}_{i}\left(V_{j} \hat{e}_{j}\right) & \hat{x} \cdot(a \hat{x}+b \hat{y}+c \hat{z})=a \\
=V_{j} \delta_{i j}=V_{i} & \hat{z} \cdot(a \hat{x}+b \hat{y}+c \hat{z})=b \\
& \hat{x}+b \hat{y}+c \hat{z})=c
\end{array}
$$

$$
\begin{aligned}
& \phi_{n}(x)=\sin \left(k_{n} x\right) \quad V(x)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x) \\
& \left\langle\phi_{n} \mid \phi_{m}\right\rangle=\int_{0}^{a} \sin \left(k_{n} x\right) \cdot \sin \left(k_{m} x\right) d x=\frac{a}{2} \delta_{n m} \\
& C_{m}=\left\langle\phi_{m}(x) \mid V(x)\right\rangle / \frac{a}{2}
\end{aligned}
$$

