Section 3.3.2 - Separation of Variables (Spherical)

* same technique as in rectangular coordinates
~ the differential equations are more complex, but we only solve them once
~ boudnary conditions are of two types
a) radial - external boundary condition - treated in the same way as cartesian
b) angular - internal to the problem - almost always have the same solution
* Key principles:
~ separation of variables
~ orthogonality of
~ boundary conditions

$$
\begin{aligned}
& V(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi) \\
& \Theta(\theta)=P_{l}(\cos \theta) \\
& r \rightarrow 0, r=a, r \rightarrow \infty
\end{aligned}
$$

* separation of variables - slight twist: solve one eigenvalue at a time

$$
\nabla^{2} V(r, \theta, \phi)=\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r} V+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} V+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} V=-\rho(l+1) V=0
$$

RADIAL EQUATION

$$
\frac{d}{d r} r^{2} \frac{d}{d r} R(r)=l(l+1) R(r)
$$

let $R(r)=r^{\alpha} \quad \alpha(\alpha+1)=l(\ell+1)$

$$
\alpha=l,-(l+1)
$$

$$
R(r)=A r^{l}+B r^{-l-1}
$$

POLAR EQUATION ($m=0$)

$$
\frac{1}{\sin \theta} \frac{d}{d \theta} \sin \theta \frac{d}{d \theta} \Theta(\theta) \quad-l(l+1) \Theta(\theta)
$$

let $x=\cos (\theta) \quad \sin \theta d \theta d \phi \rightarrow-d x d \phi$
$d x=-\sin \theta d \theta \quad \Theta(\theta)=P_{l}(x)$

$$
\frac{d}{d x}\left(1-x^{2}\right) \frac{d}{d x} P_{l}(x)+l(l+1) P_{l}(x)=0
$$

$$
\Theta(\theta)=P_{l}(x)=P_{l}(\cos \theta)
$$

AZIMUTH

$$
\frac{d^{2}}{d \phi^{2}} \Phi=-m^{2} \Phi
$$

$$
\Phi(\phi)=e^{i m \phi}
$$

if $n=0$ then

$$
\Phi(\phi)=\text { const }
$$

* general solution

$$
\nabla^{2} V=0 \quad V(r, \theta)=\sum_{l-0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r_{l+1}}\right) P_{l}(\cos \theta)
$$

* boundary conditions
i) at $r=0, \quad \frac{1}{r_{l+1}} \rightarrow \infty \quad$ so $B_{l}=0$
ii) at $r=\infty, r^{l} \rightarrow \infty$ so $\quad A_{l}=0$
iii) at $r=a$, (1) $\quad V_{0}(\theta)=V(a, \theta)=\sum_{l=0}^{\infty}\left(A_{l} a^{l}+\frac{B_{l}}{a^{l+1}}\right) P_{l}(\cos \theta)$

$$
E_{e x t}=E_{0} \hat{x}=-\nabla\left(-r^{\prime} \cos \theta\right)
$$

(2) $\frac{\partial V_{0}}{\partial r}(\theta)=\frac{\partial V}{\partial r}(a, \theta)=\sum_{l=0}^{\infty}\left(l A_{l} a^{l-1}-(l+1) \frac{B_{l}}{a^{l+2}}\right) P_{l}(\cos \theta)$
surface boundary at the interface between two regions with surface charge σ

$$
\begin{aligned}
& \nabla \cdot \varepsilon_{0} \vec{E}=\rho \\
& \nabla \times \vec{E}=0
\end{aligned} \Rightarrow \begin{array}{ll}
\hat{h} \cdot\left(\vec{E}_{2}-\vec{E}_{1}\right)=\sigma / \varepsilon_{0} \\
\hat{n} \times\left(\vec{E}_{2}-\vec{E}_{1}\right)=0
\end{array} \quad \begin{aligned}
& E_{2 n}-E_{1 n}=\sigma / \varepsilon_{0}
\end{aligned} \Rightarrow V_{2 t}^{\prime}(a)-V_{1 t}=0 \quad V_{2}^{\prime}(a)=\sigma / \varepsilon_{0}
$$

* properties of the Legendre polynomials
~ Rodrigues formula
~ orthogonality $\quad P_{l}(x)=\frac{1}{Q^{l} l!}\left(\frac{d}{d x}\right)^{l}\left(x^{2}-1\right)^{l} \quad l=0,1,2, \ldots$

$$
\begin{aligned}
& \left\langle P_{l} \mid P_{l^{\prime}}\right\rangle \equiv \int_{-1}^{l} P_{l}(x) P_{l^{\prime}}(x) d x=\int_{0}^{\pi} P_{l}(\cos \theta) P_{l^{\prime}}(\cos \theta) \sin \theta d \theta= \begin{cases}0 & \text { if } l^{\prime} \neq l \\
\frac{2}{2 l+1} & \text { if } l^{\prime}=l\end{cases} \\
& \text { is only one independent solution }
\end{aligned}
$$

~ this is only one independent solution
the other, solutions $Q(x)$ blows up at the N\&S poles $(\theta=0,2 \pi)$ and doesn't satisfy continuity boundary conditions

Problem 3.9

* spherical shell of charge $\quad \sigma=\sigma_{0} \sin ^{2} \theta$
inside region: $\quad V_{1}(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r_{l+1}}\right) P_{l}(\cos \theta)$ outside region: $V_{2}(r, \theta)=\sum_{l=0}^{\infty}\left(C_{l} r^{\ell}+\frac{D_{l}}{r_{l+1}}\right) P_{l}(\cos \theta)$ boundary conditions:

$$
\left(C_{l} R^{\ell}+\frac{D_{1}}{R^{(H)}}\right) P_{e}
$$

(2)
(1)

$4 \times \infty$ unknowns
4 B.C!'s.
i) $V_{1}(0, \theta)$ finite $\rightarrow B_{l}=0$
ii) $V_{2}(\infty, \theta)$ finite $\rightarrow C_{l}=0 \quad$ (let $C_{0}=0$ also)
iii) $V_{1}(R, \theta)=V_{2}(R, \theta) \quad \sum_{l=0}^{\infty}\left(A_{l} R^{l}+0\right) P_{l}(\cos \theta)=\sum_{l=0}^{\infty}\left(0+\frac{D_{l}}{R_{l+1}}\right) P_{l}$

$$
\begin{gathered}
\sum_{l=0}^{\infty}\left(A_{l} R^{l}-\frac{D_{l}}{R^{l+1}}\right) P_{l}(\cos \ell \\
D_{l}=A_{l} R^{2 l+1}
\end{gathered}
$$

iv) $E_{2 n}-E_{1 n}=\sigma / \varepsilon_{0}$

$$
-\left.\frac{\partial V_{2}}{\partial r}\right|_{R}+\left.\frac{\partial V_{1}}{\partial r}\right|_{R}=\frac{\sigma}{\varepsilon_{0}}=\frac{\sigma_{0}}{\varepsilon_{0}} \sin ^{2} \theta
$$

$$
\sum_{l=0}^{\infty}\left(D_{l} \frac{(l+1)}{R^{l+2}}+A_{l} \cdot l R^{l-1}\right) P_{l}(\cos \theta)=\frac{\sigma_{0}}{\varepsilon_{0}} \sin ^{2} \theta
$$

$$
\begin{aligned}
\sin ^{2} \theta & =1-\cos ^{2} \theta \\
= & -\cos ^{2} \theta+\frac{1}{3}+\frac{2}{3} \\
& =-\frac{2}{3} P_{2}(\cos \theta)+\frac{2}{3} P_{0}(\cos \theta)
\end{aligned}
$$

* $\sum_{l=0}^{\infty} A_{l}(2 l+1) R^{l-1} \cdot P_{l}(\cos \theta)=\frac{\sigma_{l}}{\varepsilon_{0}} \sin ^{2} \theta$

$$
\left(A_{0} R^{-1}\right) P_{0}+\left(A_{1} 3 R_{0}^{0}\right) P_{1}+\left(A_{2} 5 R\right) P_{2}+\ldots=\left(\frac{\sigma_{0}}{\varepsilon_{0}} \frac{2}{3}\right) P_{0}+0+\left(\frac{\sigma_{0}}{\varepsilon_{0}}-\frac{2}{3}\right) P_{2}+\ldots
$$

$$
A_{0}=\frac{2 \sigma_{0}}{3 \varepsilon_{0} R} \quad A_{1}=0 \quad A_{2}=\frac{-2 \sigma_{0} R}{15 \varepsilon_{0}}
$$

solutions: inside $\quad V_{1}=\frac{2 \sigma_{0}}{3 \varepsilon_{0}}\left(\frac{1}{R}-\frac{r^{2}}{5 R} \frac{1}{2}\left(3 \cos ^{2} \theta-1\right)\right) \quad V_{1}=V_{2} @ r=R$
outside $V_{2}=\frac{2}{3} \frac{\sigma_{0}}{\varepsilon_{0}}\left(\frac{1}{R}-\frac{R^{2}}{5 r^{3}} \frac{1}{2}\left(3 \cos ^{2} \theta-1\right)\right) \quad-V_{2}^{\prime}+V_{1}^{\prime}=\sigma_{/}$, $@ r=R$
alternate solution of B.C. iv (use integrals to extract components like in Section 3.2.1)

$$
\text { * } \begin{aligned}
\int_{\theta=0}^{\pi} P_{0}(\cos \theta) \cdot \sin ^{2} \theta \sin \theta d \theta=\int_{0}^{\pi} \sin ^{3} \theta d \theta=\frac{4}{3} & \int_{\theta=0}^{\pi} P_{0}(\cos \theta) \cdot P_{0}(\cos \theta) \sin \theta d \theta=\int_{0}^{\pi} \sin \theta d \theta=2 \\
\int_{0}^{\pi} P_{1}(\cos \theta) \sin ^{2} \theta \sin \theta d \theta=\int_{0}^{\pi} \cos \theta \cdot \sin ^{3} \theta d \theta=0 & \int_{0}^{\pi} P_{1}(\cos \theta) \cdot P_{1}(\cos \theta) \sin \theta d \theta=\int_{0}^{\pi} \cos ^{2} \theta \cdot \sin \theta d \theta=\frac{2}{3} \\
\int_{0}^{\pi} P_{2}(\cos \theta) \cdot \sin ^{2} \theta \sin \theta d \theta=\int_{0}^{\pi} \frac{1}{2}\left(3 \cos ^{2} \theta-1\right) \cdot \sin ^{2} \theta \sin \theta d \theta=\frac{-4}{15} & \int_{0}^{\pi} P_{2}(\cos \theta) \cdot P(\cos \theta) \sin \theta d \theta=\int_{0}^{\pi} \frac{1}{4}\left(3 \cos ^{2} \theta-1\right)^{2} \cdot \sin \theta d \theta=\frac{2}{5}
\end{aligned}
$$

