Section 3.4-Multipoles

* binomial expansion

$$
\begin{array}{ll}
(a+b)^{0}=1 & n \\
(a+b)^{1}=a+b & n \\
(a+b)^{2}=a^{2}+2 a b+b^{2} & n \\
(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
(a+b)^{4}=\binom{4}{0} a^{4} b^{0}+\binom{4}{1} a^{3} b^{1}+\binom{4}{2} a^{2} b^{2}+\binom{4}{3} a^{1} b^{3}+\binom{4}{4} a^{0} b^{4}
\end{array}
$$

* Pascal's triangle
~ general form

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} \quad \text { where } \quad\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n \cdot(n-1) \cdot(n-2) \cdots(n-k+1)}{1 \cdot 2 \cdot 3 \cdots \cdot k}
$$

\sim if $n \rightarrow \alpha$ (any real number), then the series does not terminate

$$
\begin{aligned}
&(1+x)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}=1+\alpha x+\frac{\alpha(\alpha-1)}{1 \cdot 2} x^{2}+\frac{\alpha(\alpha-1)(\alpha-2)}{1 \cdot 2 \cdot 3} x^{3}+\ldots \\
& \sim \text { example: } \quad \frac{1}{1-x}=1-(-x)+\frac{-1 \cdot-2}{1 \cdot 2}(-x)^{2}+\frac{-1 \cdot-2 \cdot-3}{1 \cdot 2 \cdot 3}(-x)^{3}+\ldots \\
&=1+x+x^{2}+x^{3}+\ldots \quad \text { for radius of convergence }|x|<1
\end{aligned}
$$

* 2-pole expansion

$$
\begin{aligned}
& V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{r_{4}}-\frac{q}{r_{-}}\right) \\
& \vec{r}_{ \pm}=\vec{r} \mp \frac{1}{2} \vec{d} \quad r_{ \pm}^{2} \\
&=r^{2} \mp r d \cos \theta+\frac{1}{4} d^{2} \\
& \frac{1}{r_{ \pm}} \cong \frac{1}{r}\left(1 \mp \frac{d}{r} \cos \theta\right)^{-\frac{1}{2}}
\end{aligned} \quad \approx \frac{1}{r}\left(1 \pm \frac{d}{2 r} \cos \theta+\ldots\right)
$$

$$
V(\vec{r})=\frac{q d \cos \theta}{4 \pi \varepsilon_{0} r^{2}}=\frac{\vec{p} \cdot \vec{r}}{4 \pi \varepsilon_{0} r^{3}} \quad \vec{p}=q \vec{d} \quad \begin{gathered}
\text { electric dipole } \\
\text { moment }
\end{gathered}
$$

* general axial-symmetric multipole expansion

$$
\begin{aligned}
r^{2} & =\left(\vec{r}-\vec{r}^{\prime}\right)^{2}=r^{2}\left(1-2 \frac{r^{1}}{r} \cos \gamma+\left(\frac{r^{\prime}}{r}\right)^{2}\right) \equiv r^{2}(1+\varepsilon) \\
\frac{1}{\Omega} & \left.=\frac{1}{r}(1+\varepsilon)^{-1 / 2}=\frac{1}{r}\left(1-\frac{1}{2} \varepsilon+\frac{3}{8} \varepsilon^{2}-\frac{5}{16} \varepsilon^{3}+\ldots\right)\right) \\
& =\frac{1}{r}\left(1+\frac{r^{\prime}}{r} \cos r+\frac{r^{12}}{r^{2}} \frac{1}{2}\left(3 \cos ^{2} r-1\right)+\frac{r^{\prime 3}}{r^{3}} \frac{1}{2}\left(5 \cos ^{3} \gamma-3 \cos \gamma\right)+\ldots\right. \\
& =\frac{1}{r}\left(P_{0}(\cos r)+\frac{r^{\prime}}{r} P_{1}(\cos \gamma)+\frac{r^{\prime 2}}{r^{2}} P_{2}(\cos \gamma)+\ldots=\sum_{l=0}^{\infty} \frac{r^{\prime} l}{r^{l+1}} P_{l}(\cos \theta) P_{l}(\cos \theta)\right.
\end{aligned}
$$

$$
V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \sum_{l=0}^{\infty} \frac{1}{r^{l+1}} P_{l}(\cos \theta) \int d q^{\prime} r^{l} P_{l}(\cos \theta) \quad \text { (addition formula) }
$$

multipole potential
$Q_{i n t}^{(1)}$ electric multipole (monopole, dipole, quadrupole)
$\sim Q_{\text {int }}^{(l)}$ are coefficients of the general solution of Laplace equation in spherical coords

* dipole $V_{1}(\vec{r})=\frac{1}{4 \pi \varepsilon_{0} r^{2}} \int d q^{\prime} r^{\prime} \cos \theta=\frac{\vec{p} \cdot \vec{r}}{4 \pi \varepsilon_{0} r^{3}} \quad \vec{p}=\int d q^{\prime} \vec{r}^{\prime}$
if $q=\int d q^{\prime}=0$ then $T_{\vec{a}}[\vec{p}]=\int d q^{\prime}\left(\vec{r}^{\prime}-\vec{a}\right)=\int d q^{\prime} \vec{r}^{\prime}-\vec{a} \int \partial q^{\prime}=\vec{p}$

* quadrupole

$$
T_{\vec{a}}[\ddot{Q}]=\int \phi q^{\prime} 3\left(\vec{r}^{\prime}-\vec{a}\right)(\vec{r}-\vec{a})-\left(\vec{r}^{\prime}-\vec{a}\right)^{2} I
$$

$$
=\int \operatorname{tg}^{\prime}\left(3 \vec{r}^{\prime} \vec{r}^{\prime}-\vec{r}^{\prime 2} I\right)-3\left(\vec{r}^{\prime} \vec{a}+\vec{a} \vec{r}^{\prime}-\vec{a} \vec{a}\right)+\left(2 \vec{r} \cdot \vec{a}+\vec{a}^{2}\right) I
$$

$$
=\vec{Q}_{0}-[3(\vec{p} \vec{a}+\vec{a} \vec{p})-2 \vec{p} \cdot \vec{a} I]+\left[3 \vec{a} \vec{a}-\vec{a}^{2} I\right] q
$$

$$
\stackrel{\rightharpoonup}{Q}=3 \sum_{i} \vec{p}_{i} \vec{a}_{i}+\vec{a}_{i} \vec{p}_{i}-2 \vec{p}_{i} \vec{a}_{i} I \begin{aligned}
& \text { dipoles } \vec{p}_{i} \\
& \text { at positions } \vec{a}_{i}
\end{aligned}
$$

$$
\begin{aligned}
& V_{2}(\vec{r})=\frac{1}{4 \pi \varepsilon_{0} r^{3}} \int d q r^{\prime} r^{\frac{2}{2}}\left(3 \cos ^{2} \theta^{\prime}-1\right)=\frac{1}{4 \pi \varepsilon_{0} r^{5}} \int d q^{\prime} \frac{1}{2}\left(3(\vec{r} \cdot \vec{r})^{2}-r^{2}\right) \quad Q_{x x}+Q_{y y}+Q_{z z}=0 \\
& =\frac{\frac{1}{2} \vec{r} \cdot \stackrel{\rightharpoonup}{Q} \cdot \vec{r}}{4 \pi \varepsilon_{0} r^{5}} \quad \vec{Q}=\int d q^{\prime}\left(3 \vec{r}^{\prime} \vec{r}^{\prime}-I r^{\prime 2}\right)=\int d q^{\prime}\left(\begin{array}{lll}
3 x^{2}-r^{\prime 2} & 3 x y^{\prime} & 3 x x^{\prime} z^{\prime} \\
3 y x^{\prime} & 3 y^{2}-r^{\prime} & 3 y^{\prime} z^{2} \\
3 z x^{\prime} x^{\prime} & 3 z^{\prime} y^{\prime} & 3 z^{\prime}-r^{2}
\end{array}\right)
\end{aligned}
$$

