Section 3.4-Multipoles (continued)

* spherical solutions $V(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)$ solving Laplace equation $\nabla^{2} V=0$
* internal multipole $Q_{i n t}^{(1)}=\mathrm{Be}_{2}$

$$
r \rightarrow \infty: V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \sum_{l=0}^{\infty} Q_{i n t}^{(l)} \frac{1}{r^{2+t}} P_{l}(\cos \theta)
$$

$$
r^{\prime} \rightarrow 0: \quad Q_{i n t}^{(\alpha)}=\int d q^{\prime} r^{\prime} l P_{l}(\cos \theta)
$$

	$l=0$	1	2	3
V	$1 / r$	$1 / r^{2}$	$1 / r^{3}$	$1 / r^{4}$
E	$1 / r^{2}$	$1 / r^{3}$	$1 / r^{4}$	$1 / r^{5}$

* external multipole $Q_{e t t}^{(u)}=A_{l}$

$$
\begin{aligned}
r \rightarrow 0: V(\vec{r}) & =\frac{1}{4 \pi \varepsilon_{0}} \sum_{l=0}^{\infty} Q_{e k t}^{(\alpha)} r^{l} P_{l}(\cos \theta) \\
r^{\prime} \rightarrow \infty ; \quad Q_{e t t}^{(\alpha)} & =\int d q^{\prime} \frac{1}{r^{l+1}} P_{l}(\cos \theta)
\end{aligned}
$$

	$l=0$	1	2	3
V	canst	r	r^{2}	r^{3}
E	-	const	r	r^{2}

* example: calculate the dipole moment of two oppositely charge hemispheres

$$
\begin{aligned}
& \vec{P}=\int d q^{\prime} \vec{r}^{\prime} \quad P_{x}=P_{y}=0 \\
& P_{z}=\int_{\theta=0}^{\pi} \sigma d a^{\prime} \cdot z^{\prime}=\int_{x=-1}^{1} \sigma \cdot 2 \pi R^{2} d x R x \\
& =\int_{x=-1}^{0} \frac{-q}{2 \pi R^{2}} 2 \pi R^{2} d x R x+\int_{x=0}^{1} \frac{q}{2 \pi R^{2}} 2 \pi R^{2} d x R x=q R\left[\int_{-1}^{0} x d x+\int_{0}^{1} x d x\right]=q R
\end{aligned}
$$

* example: internal and external moments of $a 4$-pole $+q @(a, a)-q @(a,-a)$

$$
\begin{aligned}
& q=\sum_{i} q_{i}=q+q-q-q=0 \\
& \vec{p}=\sum_{i} q_{i} \vec{r}_{i}=q(a, a)-q(-a, a) \\
& -q(a,-a)+q(-a,-a)=\overrightarrow{0} \\
& Q_{z x}=\sum_{i} 3 q_{i} z_{i} x_{i}=0=Q_{z y} \\
& Q_{x y}=\sum_{i} 3 q_{i} x_{i} y_{i} \\
& =+3 q \cdot a \cdot a-3 q(-a)(a) \\
& -3 q(a)(-a)+3 q(-a)(-a)=4 q a^{2} \\
& Q_{x x}=\sum_{i} q_{i}\left(3 x_{i}^{1^{2}}-r^{\prime 2}\right) \\
& =q\left(3 a^{2}-2 a^{2}\right)-q\left(3 a^{2}-2 a^{2}\right) \\
& -q\left(3 a^{2}-2 a^{2}\right)+q\left(3 a^{2}-2 a^{2}\right)=0 \\
& Q_{z z}=\varepsilon_{i} q_{i}\left(3 z_{i}^{2}-r_{i}^{2}\right) \\
& =(q-q-q+q)\left(0-2 u^{2}\right)=0
\end{aligned}
$$

* electric field of a dipole $V=\frac{p \cos \theta}{4 \pi \varepsilon r^{2}}$

$$
\begin{aligned}
\vec{E} & =\frac{\partial V}{\partial r} \hat{r}+\frac{-1}{r} \frac{\partial V}{\partial \theta} \hat{\theta}=\frac{2 p \cos \theta}{4 \pi \varepsilon_{0} r^{3}} \hat{r}+\frac{p \sin \theta}{4 \pi \varepsilon_{0} r^{3}} \hat{\theta} \\
& =\frac{p}{4 \pi \varepsilon_{0} r^{3}}(\partial \cdot \cos \theta \hat{r}+\sin \theta \hat{\theta}) \\
& =\frac{p}{4 \pi \varepsilon_{0} r^{3}}(3 \cos \theta \hat{r}-\hat{z})=3 \frac{\overrightarrow{p_{0}} \hat{r} \hat{r}-\vec{p}}{4 \pi \varepsilon_{0} r^{3}}
\end{aligned}
$$

