
Survey of Electromagnetism

* Realms of Mechanics 

* Electric charge (duFay, Franklin)
 ~ +,- equal & opposite   (QCD:  r+g+b=0)
 ~ e=1.6x10-19 C, quantized  (qn<2x10-21 e)
 ~ locally conserved       (continuity)

 ~ E&M was second step in unification
 ~ the stimulus for special relativity
 ~ the foundation of QED -> standard model

* Unification of Forces

* Electric potential
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* Electric Force  (Coulomb, Cavendish)

* Field lines / Flux
 ~ E is tangent to the field lines
  Flux = # of field lines
 ~ density of the lines = field strength
  D is called ”electric flux density “
 ~ note:              independent of distance

* Equipotential surfaces / Flow
  ~ no work done    to field lines
    Equipotentials = surfaces of const energy
  ~ work is done along field line
    Flow = # of potential surfaces crossed

  ~ potential if flow
   is independent of path
  ~ circulation or EMF in a closed loop
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* Electric Field  (Faraday)
 ~ action at a distance vs. locality
  field ”mediates “ or carries force
  extends to quantum field theories
 ~ field is everywhere always E (x, t)
  differentiable, integrable
  field lines, equipotentials
 ~ powerful techniques
  for solving complex problems
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* Magnetic field
 ~ no magnetic charge (monopole)
 ~ field lines must form loops
 ~ permanent magnetic dipoles first discovered
  torque:
  energy:
  force:

 ~ electric current shown to generate fields (Oersted, Ampere)
 ~ magnetic dipoles are current loops
 ~ Biot-Savart law - analog of Coulomb law

 ~ B = flux density
 ~ H = field intensity

* Faraday law
 ~ opposite of Orsted’s discovery:  
  changing magnetic flux induces potential (EMF)
 ~ electric generators, transformers

* Maxwell equations
 ~ added displacement current - D lines have +/- charge at each end
 ~ changing diplacement current equivalent to moving charge
 ~ derived conservation of charge and restored symmetry in equations
 ~ predicted electromagnetic radiation at the speed of light

 Maxwell equations

 Constitutive equations

 Lorentz force

 Continuity

 Potentials

 Gauge transformation Wave equation
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* linear space
  + linear combos
  + basis/components
  + projection/direct sum

* multilinear (tensor) extensions

* metric space
  + geometric view
  + components

* exterior product
  + geometric view
  + components
  + length, area, volume
  + area -> length

* orthogonal projections

* linear operators
  + preserve linear combos
  + components
  + orthogonal / preserve metric
  + symmetric / eigenvalues
  + projectors

* Einstein notation
  + 

* differential spaces
  + `d ‘ differential operator
  + `  ‘  partial derivative
  + chain rule
  + gradient
  + `dr’  line element
  +    operator

* affine spaces
  - points vs vectors
  - coordinates vs components
  - affine vs linear trans

* curvilinear coordinates
  + parametrization/coordinates
  + spherical / cylindrical
  + transformations
* curvilinear differentials
  + line, area, volume differential elements
  + formulas for grad, curl, div, laplacian

* curl
  + geometry
  + components
* divergence
  + geometry
  + components

* boundary operator
* Poincare theorem
* Stokes theorem

* Green’s fn
* Helmholtz theorem

* Integration
* diff forms
* flux and flow

* Delta distribution
* function spaces

* product rule
* second derivatives
  + laplacian
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Section 1.1 - Vector Algebra

* Linear spaces
 ~ linear combination:  (          )  is the basic operation
 ~ basis:  (       or       )  # basis elements = dimension
  independence:  not collapsed into lower dimension
  closure:       vectors span the entire space
 ~ components: 
  in matrix form:
  

* Metric (inner, dot) product  -  distance and angle

 ~ orthonormality and completeness - two fundamental identities
  help to calculate components, implicitly in above formulas

 ~ properties: 1) scalar valued - what is outer product?
      2) bilinear form
      3) symmetric

 ~ orthogonal projection: a vector     divides the space     into
  geometric view: dot product          is length of     along  
  Projection operator:               acts on x:

 ~ generalized metric:  for basis vectors which are not orthonormal,
  collect all nxn dot products into a symmetric matrix (metric tensor)

  in the case of a non-orthonormal basis, it is more difficult to find components
  of a vector, but it can be accomplished using the reciprocal basis (see HW1)

 ~ all other structure is added on as multilinear (tensor) extensions

 ~ Einstein notation:  implicit summation over repeated indices 
 ~ direct sum:             add one vector from each independent 
  space to get vector in the product space (not simply union)
 ~ projection: the vector           has a unique decomposition 
  (’coordinates’         in       )  - relation to basis/components?
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Exterior Products - higher-dimensional objects

* cross product (area)

 ~ properties: 1) vector-valued
     2) bilinear
     3) antisymmetric

 ~ components: 

 ~ orthogonal projection:       projects    to    and rotates by 90

 ~ where is the metric in x?
  vector x vector = pseudovector
  symmetries act more like a ’bivector ‘
  can be defined without metric

* triple product (volume of parallelpiped) - base times height
 ~ completely antisymmetric - definition of determinant
 ~ why is the scalar product symmetric / vector product antisymmetric?
 ~ vector  vector x vector = pseudoscalar  (transformation properties)
 ~ acts more like a ’trivector ‘ (volume element)
 ~ again, where is the metric?  (not needed!)

* exterior algebra (Grassman, Hamilton, Clifford)
 ~ extended vector space with basis elements from objects of each dimension
 ~ pseudo-vectors, scalar separated from normal vectors, scalar
  magnitude,    length,         area,         volume
    scalar,     vectors,     bivectors,     trivector

 ~ what about higher-dimensional spaces (like space-time)?
  can’t form a vector ‘cross-product’ like in 3-d, but still have exterior product

 ~ all other products can be broken down into these 8 elements
  most important example:  BAC-CAB rule  (HW1: relation to projectors)

Levi-Civita tensor - completely antisymmetric:

where (RH-rule)

ijk even permutation
ijk odd permutation
repeated indexwhere

(parallel)



Section 1.1.5 - Linear Operators

* Linear Transformation
 ~ function which preserves linear combinations
 ~ determined by action on basis vectors  (egg-crate)
 ~ rows of matrix are the image of basis vectors
 ~ determinant = expansion volume (triple product)
 ~ multilinear (2 sets of bases) - a tensor

* Change of coordinates
 ~ two ways of thinking about transformations
  both yield the same transformed components
 ~ active:   basis fixed, physically rotate vector
 ~ passive: vector fixed, physically rotate basis

* Transformation matrix (active) - basis vs. components

* Orthogonal transformations
 ~ R is orthogonal if it ’preserves the metric ‘ (has the same form before and after)

* Symmetric / antisymmetric   vs.   Symmetric / orthogonal   decomposition
 ~ recall complex numbers 

 ~ similar behaviour of symmetric / antisymmetric matrices

 ~ equivlent definition in terms of components:

 ~ starting with an orthonormal basis:
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Eigenparaphernalia

* illustration of symmetric matrix S with eigenvectors v, eigenvalues 

* a symmetric matrix has real eigenvalues

 ~ what about a antisymmetric/orthogonal matrix?

* similarity transform - change of basis (to diagonalize A)

* eigenvectors of a symmetric matrix with distinct eigenvalues are orthogonal

* singular value decomposition (SVD)
 ~ transformation from one orthogonal basis to another

 ~ extremely useful in numerical routines
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* differential operator
 ~ ex. 
   or
 ~ df and dx connected - refer to the same two endpoints
 ~ made finite by taking ratios (derivative or chain rule)
  or inifinite sum = integral (Fundamental Thereom of calculus)

* scalar and vector fields - functions of position (   )
 ~ ”field of corn “ has a corn stalk at each point in the field
 ~ scalar fields represented by level curves (2d) or surfaces (3d)
 ~ vector fields represented by arrows, field lines, or equipotentials

* partial derivative  &  chain rule
 ~ signifies one varying variable AND other fixed variables
 ~ notation determined by denominator; numerator along for the ride
 ~ total variation split into sum of variations in each direction

 ~ example:

 ~ example:  let    be the graph of a surface.  What direction does      point?
  now let       so that            on the surface of the graph  
  then                           is normal to the surface

* vector differential - gradient
 ~ differential operator    ,  del operator  

* illustration of curl     * illustration of divergence

U=5 U=4

U=3

U=2
U=1

U=0

U=6

discontinuity
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Section 1.2 - Differential Calculus

 ~ differential line element:      and      transforms between             and  



* product rules
 ~ how many are there?
 ~ examples of proofs

* second derivatives – there is really only ONE!  (the Laplacian)
 1)      ~ eg:                 no net curvature - stretched elastic band
       ~ defined component-wise on vx, vy, vz (only cartesian coords)

* unified approach to all higher-order derivatives with differential operator
 1)  d2 = 0   2) dx2 = 0   3) dx dy = - dy dx  + differential (line, area, volume) elements
 ~ Gradient

 ~ Curl ~ Divergence

* curl - circular flow of a vector field * divergence - radial flow of a vector field

 2), 4)        
       ~ equality of mixed partials (d2=0)

 3), 5)     ~ longitudinal / transverse projections

Higher Dimensional Derivatives



Section 1.4 - Affine Spaces

* Affine Space - linear space of points
                         POINTS  vs        VECTORS
 ~  operations

 ~ points are invariant under translation of the origin
 ~ can treat points as vectors from the origin to the point
  cumbersome picture: many meaninglyess arrows from meaningless origin
  position     field point      displacement vector:
   vector:  source pt      differential:  

 ~ the only operation on points is the weighted average
  weight w=0 for vectors and w=1 for points
 ~ transformation:   affine  vs         linear

 ~ decomposition:   coordinates vs   components
  - they appear the same for cartesian systems!
  - coordinates are scalar fields

* Rectangular, Cylindrical and Spherical coordinate transformations
 ~ math: 2-d -> N-d    physics: 3d + azimuthal symmetry
 ~ singularities on z-axis ( ) and origin

 rect.   cyl.  sph.

r-coordinate 
  line

-coordinate
    line

-coordinate
    line

  -level
surface

  r-level 
surface

  -level 
surface



Curvilinear Coordinates

* coordinate surfaces and lines
 ~ each coordinate is a scalar field  q( )
 ~ coordinate surfaces: constant qi

 ~ coordinate lines: constant qj, qk

* coordinate basis vectors

* differential elements * example

u - surface

v - surface

w - contra variant
basis vector (bw)

|| to w-line

w - covariant
basis vector (bw)
|_ to w-surface

u - contra variant
basis vector (bu)

|| to u-line

u - covariant
basis vector (bu)
|_ to u-surface

v - contra variant
basis vector (bv)

|| to v-line

v - covariant
basis vector (bv)
|_ to v-surface

w - surface

v -
 co

ordi
nate

 line
w - coordinate line

u - coordinate line

~ generalized coordinates

~ covariant basis

~ contravariant basis

~ scale factor

~ unit vector

~ metric (dot product)

~ Christoffel symbols - derivative of basis vectors

* formulas for vector derivatives in curvilinear coordinates

this formula does not work for 
instead, use:  



Section 1.3 - Integration

* different types of integration in vector calculus
  1-dim:
  2-dim: 
  3-dim: 

 Flow:
 Flux:
   Substance:

* recipe for ALL types of integration
 a) Parametrize the region
  ~ parametric vs relations equations of a region
  ~ boundaries translate to endpoints on integrals
 b) Pull back the paramters
  ~ x,y,z  become functions of s,t,u
  ~ differentials: dx,dy,dz become ds,dt,du
  ~ reduce using the chain rule

 c) Integrate 1-d integrals using calculus of one variable

* example: line & surface integrals on a paraboloid (Stoke’s theorem)

coordinates on 
path/surface/volume

boundary of 
coordinates

 ~ ”differential forms “ are the things after the
  all have a ’d ‘ somewhere inside
 ~ often               are burried inside of another ’d ‘
  current element
  charge element
 ~ two types of regions:
  over the region R:    (open region)
  over the boundary      of R:  (closed region)

* alternate method:  substitute for dx, dy, dz (antisymmetric)



Flux, Flow, and Substance

* Stoke’s theorem
 # of flux tubes puncturing disk (S) bounded by closed path
   EQUALS  # of surfaces pierced by closed path ( S)
 ~ each surface ends at its SOURCE flux tube

* Divergence theorem
 # of substance boxes found in volume (R) bounded by closed surface
   EQUALS  # of flux tubes piercin the closed surface ( R)
 ~ each flux tube ends at its SOURCE substance box

* Differential forms     Name  Geometrical picture

 scalar:          level curves
 vector:          equipotentials (flow sheets)
 pseudovector:           fieldlines (flux tubes)
 pseudoscalar:          boxes of substance

* Derivative’d ‘ 
 scalar:           grad  same equipotential surfaces
 vector:            curl  flux tubes at end of sheets
 pseudovector:       div  boxes at the end of flux tubes
 pseudoscalar:         

* Definite integral 
 scalar:    
 vector:          flow  # of surfaces pierced by path 
 pseudovector:        flux  # of tubes piercing surface
 pseudoscalar:          subst  # of boxes inside volume



Section 1.3.2-5 -   Region | Form = Integral

* Regions

* Forms   -   see last notes
 ~ combinations of scalar/vector fields and differentials so they can be integrated
 ~ pictoral representation enables `integration by eye ‘

* Integrals   -   the overlap of a region on a form = integral of form over region
 ~ regions and forms are dual - they combine to form a scalar
 ~ generalized Stoke ‘s therem:
  ’   ‘  and ’   ‘ are adjoint operators  -  they have the same effect in the integral

RANK
scalar 
vector
p-vector
p-scalar

VISUAL REP.
level surfaces
flow sheets
flux tubes
subst boxes

 ~ definition of boundary operator `  ‘
  `closed ‘region  (cycle):
 ~ a boundary is always closed

 ~ is every closed closed region a boundary? ~ think of a surface that has loops
 that do NOT wrap around disks!

~ a room  (walls, window, ceiling, floor)
 is CLOSED if all doors, windows closed
 is OPEN if the door or window is open;
~ what is the boundary? 

 ~ properties of differential operator `  ‘
  transforms form into higher-dimensional form,  sitting on the boundary
 ~ Poincare lemma
 ~ converse - existance of potentials

  for space without any n-dim ’holes ‘ in it

NOTATION DERIVATIVE

edge of 
the world!

note:

REGION
point
path
surface
volume



Generalized Stokes Theorem

* Fundamental Theorem of Vector Calculus: 0d-1d

* Stokes ‘ Thereom:  1d-2d

* Gaus ‘ Thereom: 2d-3d   (divergence theorem)

* note: all interior  f(x),  flow, and flux cancel at opposite edges
* proof of converse Poincare lemma:  integrate form out to boundary
* proof of gen. Stokes theorem:  integrate derivative out to the boundary

* example - integration by parts 



Section 1.5 - Dirac Delta Distribution

* Newton’s law:   yank = mass x jerk
 http://wikipedia.org/wiki/position_(vector)

* important integrals related to 

* definition:                is defined by its integral
 (a distribution, differential, or functional)

*     is the continuous version of the ”Kroneker delta “

*     is the an ”undistribution “ - it integrates to a lower dimension

*     gives rise to boundary conditions - integrate the diff. eq. across the boundary

it is a ”distribution,“
NOT a function!

otherwise
”differential “

”mask “

”slit “

position

velocity

acceleration

jerk

snap

crackle, pop,      lock, drop, ...

”step function “

”delta function “

*     is the ”kernel “ of the identity transformation

identity operator
(component
 form  )



Linear Function Spaces

* functions as vectors (Hilbert space)
 ~ functions under pointwise addition  have the same linearity property as vectors

VECTORS FUNCTIONS

 ~ addition

 ~ graph

 ~ inner product
  (metric, symmetric
   bilinear product)

 ~ linear operator
  (matrix)

 ~ closure
  (completeness)

 ~ orthonormality
  (independence)

 ~ expansion
componentindex basis functioncomponentindex basis vector

or

 ~ eigen-expansion
  (stretches)
  (principle axes) (Sturm-Liouville problems)

* Sturm-Liouville equation - eigenvalues of function operators (2nd derivative)

 ~ eigenfunctions belonging to distinct eigenvalues are orthogonal
 ~ there exists a series of eigenfunctions  y (x)  with eigenvalues 

 ~ orthogonal rotation
  (change of coordinates)
  (Fourier transform)

 ~ gradient, 
  functional derivative

(functional
  minimization)



Green Functions

* Green’s functions are used to ”invert “ a differential operator
 ~ they solve a differential equation by turning it into an integral equation

* You already saw them last year!  (in Phy 232)
 ~ the electric potential of a point charge

(Poisson equation)

* Green’s functions are the simplest solutions of the Poisson equation

 ~ is a special function which can be used to solve Poisson equation symbolically
  using the  “identity” nature of 

 ~ intuitively, it is just the “potential of a point source”

* this generalizes to one of the most powerful methods of solving problems in E&M
 ~ in QED, Green’s functions represent a photon ’propagator ‘
 ~ the photon mediates the force between two charges
 ~ it ’carries ‘the potential from charge to the other



Section 1.6 - Helmholtz Theorem

* orthogonal projections P  and P  : a vector     divides the space     into
 geometric view: dot product          is length of     along  
 Projection operator:               acts on x:

* longtudinal/transverse separation of Laplacian (Hodge decomposition)
     ~ is there a solution to these equations for
        given fixed source fields      and       ?   YES!  (compare HW1 #1)

 ~ proof:

 ~ formally,

 ~ what does       mean?   Note that       

 ~ thus         (see next page)

are SOURCES
are POTENTIAL

is Green fn

(longtudinal/transverse
components of     )

defined above
with

 ~ use the   -identity

 ~ thus any field can be decomposed into L/T parts

SCALAR POTENTIAL
* Theorem:  the following are equivalent 
 definitions of an ”irrotational “ field:

 ~ orthogonal projection:       projects    to    and rotates by 90

VECTOR POTENTIAL
* Theorem:  the following are equivalent
 definitions of a ”solenoidal “ field:

* Gauge invariance:
 if       and also
 then     and      is constant 
 (”ground potential “)

* Gauge invariance:
 if       and also
 then      and 
 (”gauge transformation “)

curl-less

wherewhere

with     fixed
is independent of path

for any closed path for any closed surface

is independent of surface

divergence-less



Section 2.1 - Coulomb’s Law

* only for static charge distributions (test charge may move but not sources)

* Electric field
 ~ we want a vector field,
  but F only at test charge
 ~ action at a distance:
  the field ’caries ‘the force
  from source pt. to field pt.

* Example (Griffiths Ex. 2.1)

 ~ Coulomb: torsion balance
 ~ Cavendish:  no electric force
  inside a hollow 
  conducting shell

 ~ Born-Infeld: 
  vacuum polarization
  violates superposition
  at the level of 

 a) Coulomb’s law ~ linear in both q & Q (superposition)
~ central force
~ inverse square (Gauss ‘) law
~ units: defined in terms of magnetostatics

~ rationalized units to cancel       in
(for parallel wires 1 m apart carrying 1 A each)

 b) Superposition

or or or

* Electric charge (duFay, Franklin)
 ~ +,- equal & opposite   (QCD:  r+g+b=0)
 ~ e=1.6x10-19 C, quantized  (qn<2x10-21 e)
 ~ locally conserved       (continuity)

Charles François de Cisternay DuFay, 1734
http://www.sparkmuseum.com/BOOK_DUFAY.HTM



Section 2.2 - Divergence and Curl of E

* 5 formulations of electrostatics

* Gauss ‘ law
 ~ solid angle

* FLUX     (Field lines)

 ~ closed loop   

 ~ closed surface

* Divergence theorem:  relationship between 
 differential and integral forms of Gauss‘law

 ~ since this is true for any volume,
  we can remove the integral from each side

 ~ angle (rad.)

 ~ solid angle of a sphere

 ~       force laws mean there is a
  const. flux”carrier“ field

~ all of electrostatics comes out of
 Coulomb’s law & superposition principle
~ we use each of the major theorems of
 vector calculus to rewrite these into
 five different formulations
 - each formulation useful for
  solving a different kind of problem
~ geometric pictures comes out of
 schizophrenetic personalities of fields:

* FLOW   (Equipotential surfaces)

 ~   equals # of equipotentials crossed
 ~           along an equipotential surface
 ~ density of surfaces = field strength

~ integral ALONG the field
~ potential = work / charge

~ integral ACROSS the field
~ potential = work / charge

= # of lines through area

= # of lines through loop

= # of charges inside volume

is unit of proportionality
 of flux to charge

F = qE

ΦE = Q/ 0

EE = 0

∇ · E = ρ/ 0

∇×�E = 0

EE = −∆V E = −∇V

W = qV

∇2V = −ρ/ 0
Laplace
Green

FTVC

Stokes

Poincaré

Gauss
Integral field  eq ‘s

(closed 
 regions)

Potential Poisson eq.

Coulomb eq. & Superposition

Helmholtz

Differential field  eq ‘s

E =

∫
dq′ˆ

4 0
2

V =

∫
dq′

4 0

= net # of lines out
 out of surface



* direct calculation of flow for a point charge
note: this is a perfect
differential (gradient)

* Poincaré lemma:  if

 ~ converse:  if

then

* Poisson equation
 ~ next chapter devoted to solving this equation - often easiest for real-life problems
 ~ a scalar differential equation with boundary conditions on En or V
 ~ inverse (solution) involves:  a) the solution for a point charge (Green’s function)

or

   going backwards:

  b) an arbitrary charge distribution is a sum of point charges (delta functions) 

* derivative chain

 ~ inverting Gauss ‘ law is more tortuous path! 

 ~ closed loop (Stokes theorem)

 ~ open path:  note that this integral is independent of path
  thus     is well-defined
  by FTVC:       so

 ~ ground potential   (constant of integration)

Flux =       (streamlines)  through an area
Flow =       (equipotentials)  downstream

for any surface

then so

 ~ this is an essential component of the Helmholtz theorem

thus

Section 2.3 - Electric Potential

* two personalities of a vector field:
 Dr. Jekyl and Mr. Hyde

where



Field Lines and Equipotentials

x

y
V (x, y)

* for    along an equipotential surface:
 fo field lines are normal to equipotential surfaces

* dipole ”two poles “ - the word ”pole “ has two different meanings: (but both are relevant)
 a) opposite  (+ vs - ,  N vs S,  bi-polar)
 b) singularity  (1/r has a pole at r=0)   

* effective monopole   (dominated by -2q far away)

* quadrupole (compare HW3 #2)

sepratrix
(potentials)

sepratrix
(field lines)



Section 2a - Examples

* show that                   from Coulomb’s law

 note that

* derive Coulomb’s law from the differential field equations

* show that the differential and integral field equations are equivalent

 ~ apply the divergence theorem
 ~ since Gauss’ law holds for any volume,
  it is only true if the integrands are equal

* Griffiths 2.6   find potential of spherical charge distribution

* Griffiths 2.7  integrate potential due to spherical charge distribution



* Griffiths 2.8  find the energy due to a spherical charge distribution

* Quiz:  calculate field at origin from a hemispherical charge distribution



Section 2.4 - Electrostatic Energy

* analogy with gravity

* energy of a distribution of charge

* continuous version

* energy density stored in the electric field - integration by parts

* work does work follow the principle of superposition
 ~ we know that  electric force, electric field, and electric potential do

 ~ energy is quadratic in the fields, not linear

 ~ the cross term is the  `interaction energy’ between two charge distributions
  (the work required to bring two systems of charge together)

 ~ is the energy stored in the field, or in the force between the charges?
 ~ is the field real, or just a calculational device?
 ~ if a tree falls in the forest ...

* energy of a point charge in a potential

potential dangerpotential=



Section 2.5 - Conductors

* conductor
 ~ has abundant ”free charge “, which can move anywhere in the conductor
* types of conductors
 i) metal: conduction band electrons, ~ 1 / atom
 ii) electrolyte: positive & negative ions
* electrical properties of conductors
 i) electric field = 0 inside conductor
  therefore V = constant inside conductor
 ii) electric charge distributes itself
  all on the boundary of the conductor
 iii) electric field is perpendicular to the
  surface just outside the conductor

* induced charges
 ~ free charge will shift around charge on a conductor
 ~ induces opposite charge on near side of conductor
  to cancel out field lines inside the conductor
 ~ Faraday cage: external field lines are shielded
  inside a hollow conductor
 ~ field lines from charge inside a hollow conductor are
  ”communicated “ outside the conductor by induction
  (as if the charge were distributed on a solid conductor)
  compare: displacement currents, sec. 7.3

* electrostatic pressure
 ~ on the surface:

 ~ for a conductor:

 ~ note: electrostatic pressure corresponds to energy density
  both are part of the stress-energy tensor

inside outside



Capacitance

* capacitance
 ~ a capacitor is a pair of conductors held at different potentials, stores charge
 ~ electric FLOW from one conductor to the other equals the POTENTIAL difference
 ~ electric FLUX from one conductor to the other is proportional to the CHARGE

* work formulation * ex: parallel plates

 ~ this pattern repeats itself for many other components:
  resistors, inductors, reluctance (next sememster)

* capacitance matrix
 ~ in a system of conductors, each is at a constant potential
 ~ the potential of each conductor is proportional
  to the individual charge on each of the conductors
 ~ proportionality expressed as a matrix
  coefficients of potetial      or capacitance matrix

(closed surface)

(open path)



Section 3.1 - Laplace ‘s Equation

* overview:  we leared the math (Ch 1) and the physics (Ch2) of electrostatics
 basically all of the concepts of Phy232, but in a new sophisticated language
 ~ Ch 3:  Boundary Value Problems (BVP) with LaPlace’s equation (NEW!)
  a) method of images b) separation of variables c) multipole expansion
 ~ Ch 4: Dielectric Materials: free and bound charge  (more in-depth than 232)

* Classical field equations - many equations, same solution:
 Laplace/Poisson:
 Maxwell wave:
 Heat equation:
 Diffusion eq:
 Drumhead wave:
 Schrödinger:

* 1-dimensional Laplace equation

 ~        satisfy boundary conditions  or  
 ~ mean field:
 ~ no local maxima or minima (stretches tight)

~ charge singularity
  between two regions:

~ charge singularity
  between two regions:

* 2-dimensional Laplace equation
 ~ no straighforward solution (method of solution depends on the boundary conditions)
 ~ Partial Differential Equation (elliptic 2nd order)
 ~ chicken & egg:  can’t solve       until you know 
 ~ solution of a rubber sheet
 ~ no local extrema –- mean field:
* 3-dimensional Laplace equation
 ~ generalization of 2-d case
 ~ same mean field theorem:

Lorentz force
Continuity
Maxwell electric,
  magnetic fields
Constitution
Potentials
Gauge transform

(I) Brute force!

(II) Symmetry (III) Elegant but cumbersome

(IV) Refined brute ( V ) the WORKHORSE !!

~ potentials       , dielectric  ,  permeability
~ speed of light    , charge/current density     
~ temp   ,  cond.   , heat           , heat cap.
~ concentration   , diffusion     , flow
~ displacement   , speed of sound   , force
~ prob amp   , mass    , potential   , Planck  

Equations of electrodyamics:

strai
ght l

ine



Boundary Conditions

* 2nd order PDE’s classified in analogy with conic sections: replacing      with    , etc 
 a) Elliptic - “spacelike” boundary everywhere (one condition on each boundary point)
  eg. Laplace’s eq, Poisson’s eq.
 b) Hyperbolic - “timelike” (2 initial conditions) and “spacelike” parts of the boundary
  eg. Wave equation
 c) Parabolic - 1st order in time (1 initial condition)
  eg. Diffusion equation, Heat equation

 integration by parts:

 if     and     are both solutions of                       then let
* Uniqueness of a BVP (boundary value problem) with Poisson’s equation:

 in region of interest:

 note that:        and      always 

 thus if               then       everywhere

 a) Dirichlet boundary condition:   - specify potential           on boundary
 b) Neuman bounary condition:   - specify flux   on boundary

* Continuity boundary conditions - on the interface between two materials
 Flux:  Flow:

(shorthand
for now)

* the same results obtained by integrating field equations across the normal

 ~ opposite boundary conditions for magnetic fields: 
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