Survey of Electromagnetism

* Realms of Mechanics

~ E&M was second step in unification ~ the stimulus for special relativity ~ the foundation of QED -> standard model

* Electric charge (duFay, Franklin)
~ +,- equal & opposite (QCD: r+g+b=0)
~ e=1.6×10⁻¹⁹ C, quantized (q⁻²/_n<2×10⁻²¹ e)
~ locally conserved (continuity)

* Electric Force (Coulomb, Cavendish)

$$\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

 * Electric Field (Faraday)
 ~ action at a distance vs. locality field "mediates" or carries force extends to quantum field theories
 ~ field is everywhere always E(x, t) differentiable, integrable field lines, equipotentials
 ~ powerful techniques

for solving complex problems

* Unification of Forces

* Electric potential

F=qE force field	Ê=mg grav. field
U = q E d energy potential	U=mgh "danger"

* Equipotential surfaces / Flow ~ no work done to field lines Equipotentials = surfaces of const energy ~ work is done along field line

$$\mathcal{E}_{E} \equiv \int \vec{E} \cdot d\vec{\ell} \qquad \forall = -\mathcal{E}_{E}$$

~ potential if flow $E=-\nabla V$ is independent of path ~ circulation or EMF in a closed loop

in the case of a non-orthonormal basis, it is more difficult to find components of a vector, but it can be accomplished using the reciprocal basis (see HWI)

Exterior Products - higher-dimensional objects

* cross product (area)

* cross product (area)

$$\hat{C} = \bar{a} \times \bar{b} = \hat{h} a \hat{b} \sin \theta = \hat{h} a \hat{b} = \hat{h} a \hat{b} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ a_x & \hat{y} & a_z \\ a_y & a_z \\ b_y & b_z \\ b_z & b_z \\ a_z & b_z & b_z & b_z \\ a_z$$

Section 1.1.5 - Linear Operators

* Linear Transformation

- ~ function which preserves linear combinations
- ~ determined by action on basis vectors (egg-crate)
- ~ rows of matrix are the image of basis vectors
- ~ determinant = expansion volume (triple product)
- ~ multilinear (2 sets of bases) a tensor

* Change of coordinates

- ~ two ways of thinking about transformations both yield the same transformed components ~ active: basis fixed, physically rotate vector ~ passive: vector fixed, physically rotate basis
- * Transformation matrix (active) basis vs. components

active transformation

- $(\vec{a} \vec{b} \vec{c}) = (\hat{x} \hat{y} \hat{z}) (a_x b_x c_x) (a_y b_y c_y) (a_z b_z c_z)$ $\vec{\mathbf{x}} = \overset{(\vec{a},\vec{b},\vec{c})}{\overset{(\alpha)}{\mathcal{B}}} = \overset{(\hat{\mathbf{x}}\hat{\mathbf{y}}\hat{\mathbf{z}})}{\overset{(\mathbf{x})}{\mathcal{z}}} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix}$ $\begin{pmatrix} \mathsf{X} \\ \mathsf{Y} \\ \mathsf{Z} \end{pmatrix} = \begin{pmatrix} \mathsf{a}_{\mathsf{x}} \ \mathsf{b}_{\mathsf{x}} \ \mathsf{C}_{\mathsf{x}} \\ \mathsf{a}_{\mathsf{y}} \ \mathsf{b}_{\mathsf{y}} \ \mathsf{C}_{\mathsf{y}} \\ \mathsf{a}_{\mathsf{z}} \ \mathsf{b}_{\mathsf{z}} \ \mathsf{C}_{\mathsf{z}} \end{pmatrix} \begin{pmatrix} \mathsf{a} \\ \mathsf{b} \\ \mathsf{p} \\ \mathsf{r} \end{pmatrix}$ $\vec{x} = \vec{e} \cdot \vec{x} = \vec{e} \cdot \vec{R} \cdot \vec{x} = \vec{e} \cdot \vec{x} = \vec{x}$ É= È R $X = \mathcal{R} X'$
- * Orthogonal transformations ~ R is orthogonal if it 'preserves the metric' (has the same form before and after)
 - $\vec{\mathcal{E}}^{T} \cdot \vec{\mathcal{E}} = \begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix} \cdot \begin{pmatrix} \hat{x} \cdot \hat{y} \end{pmatrix} = \begin{pmatrix} \hat{x} \cdot \hat{x} \cdot \hat{x} \cdot \hat{y} \\ \hat{y} \cdot \hat{x} \cdot \hat{y} \cdot \hat{y} \end{pmatrix} = \begin{pmatrix} \hat{g}_{11} \cdot \hat{g}_{12} \\ g_{21} \cdot g_{22} \end{pmatrix} = \mathcal{G} \qquad \vec{\mathcal{E}}^{T} \cdot \vec{\mathcal{E}}^{T} = \begin{pmatrix} \vec{\alpha} \\ \vec{b} \end{pmatrix} \cdot \begin{pmatrix} \vec{\alpha} \cdot \vec{b} \\ \vec{b} \cdot \vec{a} \cdot \vec{b} \cdot \vec{b} \end{pmatrix} = \mathcal{G}^{T}$ $\vec{e}' = \vec{e} R$ $\vec{e}' = R \vec{e} \cdot \vec{e} R = R g R = g'$ g = g' R g R = g~ equivlent definition in terms of components: $\vec{X} \cdot \vec{X} = \vec{X}^T \vec{g} \cdot \vec{X} = \vec{X}^T \vec{R}^T \vec{g} \cdot \vec{R} \cdot \vec{x} = \vec{X}^T \vec{g}' \cdot \vec{X}$ (metric invariant under rotations if g = g')
 - ~ starting with an orthonormal basis: $g = I \quad g_{ij} \in S_{ij} \quad \mathcal{R}^T \mathcal{R} = I \quad \mathcal{R}^T = \mathcal{R}^T$

* Symmetric / antisymmetric vs. Symmetric / orthogonal decomposition ~ recall complex numbers U=p+ip p*=p (ip)*=-ip $e^{u} = e^{p+i\phi} = re^{i\phi} |e^{i\phi}|^{2} = e^{-i\phi}e^{i\phi} = e^{i0} = 1$ M artibrary matrix

~ similar behaviour of symmetric / antisymmetric matrices

T symmetric $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & (b+c)_{2} \\ (b+c)_{2} & d \end{pmatrix} + \begin{pmatrix} O & (b-c)_{2} \\ (c-b)_{2} & O \end{pmatrix} = T + A$ A antisymmetric JA R S symmetric $e^{M} = [+M + \pm M^{2} + \pm M^{3} + ... = e^{T + A} \neq e^{T} e^{A}$ R orthogonal $S = e^{T} = e^{vWv^{-1}} = Ve^{W}V^{-1}$ $R = e^{A}$ $R^{T}R = (e^{A})^{T}e^{A} = e^{A^{T}+A} = e^{o} = I$ $\det \begin{pmatrix} e^{\gamma_{1}} \\ e^{\gamma_{2}} \end{pmatrix} = e^{\gamma_{1}} \cdot e^{\gamma_{2}} \dots = e^{\gamma_{1} + \gamma_{2} + \dots} = e^{\operatorname{tr} \left(\gamma_{1} \\ \gamma_{2} \right)}$ $\det e^A = e^{\operatorname{tr} A} = e^\circ = 1$

Eigenparaphernalia

* illustration of symmetric matrix 5 with eigenvectors v, eigenvalues λ

* similarity transform - change of basis (to diagonalize A)

$$S(V_{1}V_{2}...) = (V_{1}V_{2}...)(V_{1}V_{2}...) \qquad SV = VWV^{-1} = VWV^{T}$$

* a symmetric matrix has real eigenvalues

$$S \lor = \lambda \lor \qquad \bigvee^{*T} S \lor = \lambda \lor^{*T} \lor \qquad \chi^{*T} S \lor = \lambda \lor^{*T} \lor \qquad \chi^{*T} S \lor = \chi^{*} \lor^{*T} \lor \qquad \chi^{*T} S \lor = \chi^{*} \lor^{*T} \lor$$

~ what about a antisymmetric/orthogonal matrix?

* eigenvectors of a symmetric matrix with distinct eigenvalues are orthogonal

$$\begin{array}{l} \nabla^{\mathsf{T}} S = (S^{\mathsf{T}} \vee)^{\mathsf{T}} = (S_{\mathsf{V}})^{\mathsf{T}} = (\lambda_{\mathsf{V}})^{\mathsf{T}} = \nabla^{\mathsf{T}} \lambda \\ & \lambda_{1} \vee_{1} \cdot \vee_{2} = (\nabla_{1}^{\mathsf{T}} S) \vee_{2} = \nabla_{1}^{\mathsf{T}} (S_{\mathsf{V}_{2}}) = \vee_{1} \cdot \vee_{2} \lambda \\ & \vee_{1} \cdot \vee_{2} (\lambda_{1} - \lambda_{2}) = 0 \quad \text{if } \lambda_{1} \neq \lambda_{2} \text{ then } \vee_{1} \cdot \vee_{2} = 0. \end{array}$$

* singular value decomposition (SVD) ~ transformation from one orthogonal basis to another

$$M = RS = RVWV^{T} = UWV^{T}$$

~ extremely useful in numerical routines

- M arbitrary matrix
- R orthogonal
- S symmetric
- W diagonal matrix
- V orthogonal (domain)
- (orthogonal (range)

Section 1.2 - Differential Calculus

* differential operator

$$d = \lim_{\Delta \to 0} \Delta \approx 0$$

or $d(\sin x^2) = \cos(x^2) dx^2 = \cos x^2 \cdot 2x \cdot dx$

~ df and dx connected - refer to the same two endpoints

~ made finite by taking ratios (derivative or chain rule) or inifinite sum = integral (Fundamental Thereom of calculus)

$$\frac{df}{dx} = \frac{df}{du} \frac{du}{dx} \qquad \int \frac{df}{dx} dx = \int \frac{df}{dt} = f \Big|_{a}^{b}$$

* scalar and vector fields - functions of position (\vec{r})

~ "field of corn" has a corn stalk at each point in the field

 \sim scalar fields represented by level curves (2d) or surfaces (3d)

 \sim vector fields represented by arrows, field lines, or equipotentials

* partial derivative & chain rule

 \sim signifies one varying variable AND other fixed variables

~ notation determined by denominator; numerator along for the ride

~ total variation split into sum of variations in each direction

$$\frac{\partial u}{\partial x} \left(\frac{\partial u}{\partial x} \right)_{y^2} \partial_x u \quad u_{xx} \qquad \frac{\dots}{\dots} = \frac{dx}{\dots} \frac{\dots}{\partial x} + \frac{dy}{\dots} \frac{\dots}{\partial y} + \frac{dz}{\dots} \frac{\dots}{\partial z}$$

* vector differential - gradient
~ differential operator , del operator

$$dT = \frac{\partial T}{\partial x} dx + \frac{\partial T}{\partial y} dy + \frac{\partial T}{\partial z} dz$$

 $= (\frac{\partial x}{\partial x}, \frac{\partial y}{\partial y}, \frac{\partial z}{\partial z}) T \cdot (\frac{\partial x}{\partial y}, \frac{\partial y}{\partial z})$
 $\nabla = \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z} = \frac{\partial}{\partial x}$
 $d\hat{l} = \hat{x} dx + \hat{y} dy + \hat{z} dz = d\hat{r}$
 $d\hat{l} = \hat{x} dx + \hat{y} dy + \hat{z} dz = d\hat{r}$
 $d\hat{l} = \hat{x} dx + \hat{y} dy + \hat{z} dz = d\hat{r}$
 ∇
 $differential line element: $\hat{d}\hat{l}$ and $\hat{d}\hat{l}$ transforms between $\hat{x}, \hat{y}, \hat{z} \leftrightarrow dx, dy, dz$ and $d \leftrightarrow \nabla$
 \sim example: $dx^2y = \partial xyy dx + x^2 dy = (\partial xyy x^2) \cdot (\partial x dy)$$

~ example: let
$$Z=f(x,y)$$
 be the graph of a surface. What direction does ∇f point?
now let $g=Z-f(x,y)$ so that $g=0$ on the surface of the graph
then $\nabla g = (-f_{1x_1}, -f_{y_1})$ is normal to the surface

* illustration of divergence

Higher Dimensional Derivatives

* curl - circular flow of a vector field $\nabla \times \vec{V} = \begin{vmatrix} \hat{X} & \hat{Y} & \hat{Z} \\ \partial_{X} & \partial_{Y} & \partial_{z} \\ V_{X} & V_{Y} & V_{z} \end{vmatrix} = \begin{pmatrix} \hat{X} & (V_{z,Y} - V_{y,z}) \\ \hat{X} & (V_{x,Z} - V_{z,X}) \\ + \hat{Z} & (V_{y,X} - V_{x,y}) \end{vmatrix}$

* product rules ~ how many are there? ~ examples of proofs

 $\vec{a}_{x}(\vec{b}\times\vec{c}) = \vec{b}(\vec{a}\cdot\vec{c}) - \vec{c}(\vec{a}\cdot\vec{b})$ $\vec{A}\times(\vec{v}\times\vec{b}) = \vec{v}(\vec{A}\cdot\vec{b}) - \vec{b}(\vec{A}\cdot\vec{v})$ $\vec{v}_{x}(\vec{A}\times\vec{b}) = \vec{A}(\vec{v}\cdot\vec{b}) - \vec{b}(\vec{v}\cdot\vec{A})$

* divergence - radial flow of a vector field

$$\nabla \cdot \vec{\nabla} = (\partial_{x} \partial_{y} \partial_{z}) \begin{pmatrix} V_{x} \\ V_{y} \\ V_{z} \end{pmatrix} = V_{x,x} + V_{y,y} + V_{z,z}$$

$$\nabla(fg) = \nabla f \cdot g + f \cdot \nabla g$$

$$\nabla(\vec{A} \cdot \vec{B}) = \vec{A} \times (\nabla \times \vec{B}) + (\vec{A} \cdot \nabla)\vec{B} + (\vec{B} \leftrightarrow \vec{A})$$

$$\nabla \times (f\vec{A}) = \nabla f \times \vec{A} + f (\nabla \times \vec{A})$$

$$\nabla \times (A \times \vec{B}) = (B \cdot \nabla)A - B (\nabla \cdot A) - (\vec{B} \leftrightarrow \vec{A})$$

$$\nabla \cdot (f\vec{A}) = \nabla f \cdot \vec{A} + f \nabla \cdot \vec{A}$$

$$\nabla \cdot (\vec{A} \times \vec{B}) = (\nabla \times \vec{A}) \cdot \vec{B} - \vec{A} \cdot (\nabla \times \vec{B})$$

* unified approach to all higher-order derivatives with differential operator 1) $d^2 = 0$ 2) $dx^2 = 0$ 3) dx dy = -dy dx + differential (line, area, volume) elements ~ Gradient $df = f_{,x} dx + f_{iy} dy + f_{,z} dz = \nabla f \cdot d\hat{1}$ $d\hat{1} = (dx, dy, dz) = d\hat{r}$

~ Divergence

~ Curl

$$d(\widehat{A} \cdot d\widehat{I}) = d(A_{x} dx + A_{y} dy + A_{z} dz)$$

$$= A_{x,x} dx dx + A_{x,y} dy dx + A_{x^{1/2}} dz dx$$

$$+ A_{y,x} dx dy + A_{y,y} dy dy + A_{y,z} dz dy$$

$$+ A_{z,x} dx dz + A_{z,y} dy dz + A_{z,z} dz dz$$

$$= (A_{z,y} A_{y,z}) dy dz + (A_{x,z} - A_{z,y}) dz dx + (A_{y,x} - A_{x,y}) dx dy$$

$$d(\widehat{A} \cdot d\widehat{I}) = (\nabla x \widehat{A}) \cdot d\widehat{a}$$

$$d\widehat{a} = (dy dz, dz dx, dx dy) = \frac{1}{2} d\widehat{I} \times d\widehat{I} = d\widehat{\tau}$$

$$d(\overline{B} \cdot d\overline{a}) = d(B_{x} dy dz + B_{y} dz dx + B_{z} dx dy)$$

$$= B_{x,x} dx dy dz + B_{x,y} dy dy dz + B_{x,z} dz dy dz$$

$$+ B_{y,x} dx dz dx + B_{y,y} dz dz dx + B_{y,z} dz dz dz$$

$$+ B_{z,x} dx dx dy + B_{z,y} dy dx dy + B_{z,z} dz dx dy.$$

$$= (B_{x,x} + B_{y,y} + B_{z,z}) dx dy dz$$

 $d(\vec{B} \cdot \vec{da}) = \nabla \cdot \vec{B} \cdot d\tau \quad d\tau = \frac{1}{6} d\vec{l} \cdot d\vec{l} \times d\vec{l} = d\vec{\tau}$

$$\nabla f = \frac{df}{d\tilde{r}} = \frac{df}{d\tilde{r}} \qquad \nabla x \tilde{A} = \frac{d(\tilde{A} \cdot d\tilde{\ell})}{d\tilde{a}} = \frac{d(d\tilde{r} \cdot \tilde{A})}{d\tilde{r}} \qquad \nabla \cdot \tilde{B} = \frac{d(\tilde{B} \cdot d\tilde{a})}{d\tilde{r}} = \frac{d(d\tilde{r} \cdot \tilde{B})}{d\tilde{r}}$$

Section 1.4 - Affine Spaces
* Affine Space - linear space of points
POINTS vs VECTORS
~ operations
$$\bigcirc -P = \overrightarrow{v}$$

 $P + \overrightarrow{v} = \bigcirc$
~ points are invariant under translation of the origin
~ can treat points as vectors from the origin to the point
cumberscome picture: many meaninglyess arous from meaningless origin
position field point $\overrightarrow{\tau}^{-}(Y_{1} \lor_{1}^{2})$ displacement vector: $\overrightarrow{x} = \overrightarrow{r} - \overrightarrow{r}^{1}$
vector: source pt $\overrightarrow{r}^{-}(X_{1} \lor_{1}^{2})$ displacement vector: $\overrightarrow{x} = \overrightarrow{r} - \overrightarrow{r}^{1}$
~ the only operation on points is the weighted alreage
weight w=0 for vectors and w=1 for points
~ transformation: affine vs linear
 $(\overrightarrow{R} \not\in \bigcup_{1} (\overrightarrow{r}) = (\overrightarrow{R} \overrightarrow{r} \not\in \bigcup_{1} (\overrightarrow{r}))$
~ decomposition: coordinates vs components
 $-$ they appear the same for cartesian systems!
 $-$ coordinates are scalar fields $\overrightarrow{q}^{\circ}(\overrightarrow{r})$
* Rectangular, Cylindrical and Spherical coordinate transformations
 $-$ math: $2-d - N \cdot d$ physics: $3d + azimuthal symmetry$
 $-$ singularities on z-axis () and origin
rect. cyl . sph .
 $X = S \cdot \cos \phi = r \cdot \sin \phi \cdot \sin \phi$
 $X = S \cdot \sin \phi = r \cdot \sin \phi \cdot \sin \phi$
 $Z = Z = r \cdot \cos \phi$

 $d\vec{l}_{rec} = \hat{\chi} d\chi + \hat{\mathcal{Y}} dy + \hat{\mathcal{Z}} dz$ $d\vec{l}_{eye} = \hat{s}ds + \hat{\phi}sd\phi + 2dz$ $d\hat{J}_{sph} = \hat{r}_{d\hat{r}} + \hat{\mathfrak{S}} \underbrace{r}_{d\hat{\theta}} + \hat{\phi} \underbrace{r}_{sin\theta} \underbrace{d\phi}_{d\hat{\theta}}$ Z Z Z θ Z y Ÿ Х

 $d\bar{q}_{ec} = \hat{\chi} dy dz + \hat{y} dz dx + \hat{z} dx dy$ $d\tau_{rec} = dx dy dz$ $d\tau_{cyl} = ds \cdot sd\phi \cdot dz$ $d\tau_{sph} = dr \cdot r d\theta \cdot rsin\theta d\phi$ $= r^2 dr dS$ $d\tilde{q}_{\mu} = \hat{s} \, sd\phi dz + \hat{\phi} dz ds + \hat{z} ds \, sd\phi$ $d\tilde{q}_{ph} = \hat{r} r d\theta r s M \theta d\phi + \hat{\theta} r s M \theta d\phi dr + \hat{\phi} dr r d\theta$

di F

ŕ(Θ)

dl_r=dr

Ży

r(d)

dð

Curvilinear Coordinates

* differential elements

$$\begin{split} d\vec{l} &= \frac{\partial \vec{r}}{\partial q^{i}} dq^{i} + \frac{\partial \vec{r}}{\partial q^{2}} dq^{2} + \frac{\partial \vec{r}}{\partial q^{3}} dq^{3} = \vec{b}_{i} dq^{i} \\ &= \hat{e}_{i} h_{i} dq^{i} + \hat{e}_{2} h_{2} dq^{2} + \hat{e}_{3} h_{3} dq^{3} \\ d\vec{l}_{2} \quad d\vec{l}_{3} \\ d\vec{a} &= \pm d\vec{l} \times d\vec{l} = \begin{bmatrix} \hat{e}_{i} & \hat{e}_{2} & \hat{e}_{3} \\ h_{i} dq^{i} & h_{2} dq^{2} h_{3} dq^{3} \\ h_{i} dq^{i} & h_{2} dq^{2} h_{3} dq^{3} \end{bmatrix} \\ &= \hat{e}_{i} h_{2} d\vec{q}^{2} h_{3} d\vec{q}^{3} + \hat{e}_{2} h_{3} dq^{3} h_{3} dq^{4} + \hat{e}_{3} h_{i} dq^{4} h_{2} dq^{2} \\ d\vec{r} &= \pm d\vec{l} \times d\vec{a} = \pm d\vec{l} \cdot d\vec{l} \times d\vec{l} = h_{i} dq^{i} \cdot h_{2} dq^{2} \\ d\vec{r} &= \pm d\vec{l} \times d\vec{a} = \pm d\vec{l} \cdot d\vec{l} \times d\vec{l} = h_{i} dq^{i} \cdot h_{2} dq^{2} \cdot h_{3} dq^{3} \end{split}$$

* example X=S
$$dx = c_{\varphi} dS - s s_{\varphi} d\phi$$

 $(c_{\varphi} = cos \phi)$ Y=S s_{φ} $dy = s_{\varphi} ds + s c_{\varphi} d\phi$
 $d\vec{l} = \hat{x} dx + \hat{y} dy = (\hat{x} c_{\varphi} + \hat{y} s_{\varphi}) ds + (\hat{x} s_{\varphi} - \hat{y} c_{\varphi}) s d\phi$
 $= \hat{s} ds + \hat{\phi} s d\phi$ $(\hat{s} \hat{\phi}) = (\hat{x} \hat{y}) \begin{pmatrix} c_{\varphi} - s_{\varphi} \\ s_{\varphi} & c_{\varphi} \end{pmatrix}$
 $S^{2} = x^{2} + y^{2}$ $\lambda s ds = \lambda x dx + \lambda y dy$
 $y = x tan \phi$ $dy = dx tan \phi + x sec^{2}\phi d\phi$
 $d\phi = -\frac{y}{S^{2}} dx + \frac{x}{S^{2}} dy$
 $\nabla s = \frac{x}{S} \hat{x} + \frac{y}{S} \hat{y} = c_{\varphi} \hat{x} + s_{\varphi} \hat{y} = \hat{s}$
 $\nabla \phi = -\frac{y}{S^{2}} \hat{x} + \frac{x}{S^{2}} \hat{y} = -s_{\varphi} \hat{x} + c_{\varphi} \hat{y} = \frac{\phi}{S}$

* formulas for vector derivatives in curvilinear coordinates

$$\begin{split} df &= \frac{\partial f}{\partial q^{i}} dq^{i} = \frac{\partial f}{h_{i} \partial q^{i}} \cdot h_{i} dq^{i} = \nabla f \cdot d\vec{l} \\ \nabla f &= \frac{df}{d\vec{r}} = \frac{\hat{\epsilon}_{i}}{h_{i}} \frac{\partial}{\partial q^{i}} f \\ d(\vec{A} \cdot d\vec{l}) &= d(A_{k} h_{k} dq^{k}) = \frac{\partial}{\partial q^{i}} (h_{k} A_{k}) dq^{i} dq^{k} \\ &= \epsilon_{iqk} \frac{\partial (h_{k} A_{k})}{h_{j} h_{k} \partial q^{k}} d\vec{a}_{i} = (\nabla x \vec{A}) \cdot d\vec{a} \\ d(\vec{B} \cdot d\vec{a}) &= d(B_{i} h_{j} dq^{i} h_{k} dq^{k}) = \frac{\partial}{\partial q^{i}} (h_{i} h_{k} B_{i}) dq^{i} dq^{i} dq^{k} \\ &= \frac{1}{h_{i} h_{k} h_{3}} \frac{\partial}{\partial q^{i}} \frac{\partial (h_{i} h_{k} B_{i})}{\partial q^{i}} d\tau = \nabla \cdot \vec{B} d\tau \\ this formula does not work for \nabla^{2} \vec{B} \\ instead, use: \nabla^{2} &= \nabla \nabla \cdot - \nabla x \nabla x \end{split}$$

Section 1.3 - Integration

Flux, Flow, and Substance

* Differential forms			Name	Geometrical picture			
scalar:	$\varphi^{(\circ)} = \varphi(x)$	<)		level curves			
vector:	$d \mathcal{E}^{(0)} = \widetilde{A} =$	$=\overline{A}\cdot d\overline{l} = A_x dx +$	- Aydy + Azdz	equipotentials (flow sheets)			
pseudovector	$f: d \overline{\Phi}^{(2)} = \widetilde{B} =$	$=$ $B \cdot d\bar{a} = B_{x} dy d\bar{a}$	2 + By dzdx + Bzdxdy	fieldlines (flux tubes)			
pseudoscalar	$\rightarrow: \overline{dq}^{(3)} = \overline{p} =$	$= pd\tau = pdxd$	ydz	boxes of substance			
* Derivative'd'							
scalar:	$d\varphi = \nabla$	7 y.dl	grad	same equipotential surfaces			
vector:	$d\widetilde{A} = V$	7xA.da	curl	flux tubes at end of sheets			
pseudovector	$r: d\tilde{B} = V$	7.Bot	div	boxes at the end of flux tubes			
pseudoscalar	$-: d\bar{p} = c$)					
* Definite integral							
scalar:	0~						
vector:	$\mathcal{E} = \int_{\mathcal{P}} \mathcal{A}$	= Jp Ardl	flow	# of surfaces pierced by path			
pseudovector	$F = \int_{B} B$	= J's B.da	flux	# of tubes piercing surface			
pseudoscalar	$\Rightarrow Q = \int_{Y} \tilde{P}$	$=\int_{Y} dq$	subst	# of boxes inside volume			
$\tilde{E} = \tilde{E} \cdot d\tilde{I}$	Ь,		VH-H.dl	V D=D·da			
	the ty		$\tilde{J}=\tilde{J}\cdot d\tilde{a}=0$	$d\widetilde{H}$ $\overline{\Phi}_{D} = \int_{\Sigma} \overline{D} \cdot d\widetilde{a}$			
11 T=5 4 3		b		$\tilde{p} = p d\tau = d\tilde{p}$			
		8+					
1 /							
$\Delta f = \int_{a}^{b} f = f(b) - f(b)$	a = -4	$\mathcal{E} = \int_{\mu}^{\mu} \widetilde{H} = \int_{\mu}^{\mu} \widetilde{H}$	·dĨ = +3	$\overline{\Phi}_{D} = \int \vec{D} \cdot d\vec{\alpha} = \int \vec{D} = +2.$			
$\int_{\alpha} \int df = \Delta f = 0$		$\mathcal{E}_{\mu} = \left\{ \begin{array}{c} H \\ H \end{array} \right\} = \left\{ \begin{array}{c} H \\ H \end{array} \right\} = \left\{ \begin{array}{c} H \\ H \end{array} \right\} = \left\{ \begin{array}{c} H \\ H \end{array} \right\}$	=(J=I=+4	$\overline{\Phi} = \overline{\widehat{\Phi}} \widetilde{D} = \int d\widetilde{D} = \int \widetilde{\rho} = Q = +4$			
$df = \nabla f dI \vec{F}$.	$d\vec{l} = \vec{F}$	$\partial \widetilde{H} = d (\widetilde{\Pi} \cdot \widetilde{\Pi}) - (\nabla \cdot \widetilde{\Pi})$	いん=えん-ゔ	$\vec{n} = d(\vec{b} \cdot d\vec{a}) = \vec{b} \cdot \vec{b} \cdot \vec{a} = c \cdot \vec{a} \cdot \vec{a}$			
		$-\infty(n-\alpha n) - (V \times r)$	(,) $u = 0$ $u = 0$				

* Stoke's theorem

of flux tubes puncturing disk (S) bounded by closed path EQUALS # of surfaces pierced by closed path (DS) ~ each surface ends at its SOURCE flux tube

* Divergence theorem

of substance boxes found in volume (R) bounded by closed surface EQUALS # of flux tubes piercin the closed surface (DR) ~ each flux tube ends at its SOURCE substance box

B°

- ~ a room (walls, window, ceiling, floor) is CLOSED if all doors, windows closed is OPEN if the door or window is open; ~ what is the boundary?
- ~ think of a surface that has loops that do NOT wrap around disks!
- * Forms see last notes ~ combinations of scalar/vector fields and differentials so they can be integrated ~ pictoral representation enables `integration by eye'

REGION Of Q point RANK NOTATION VISUAL REP. DERIVATIVE $\omega^{(o)} = f$ $d\omega^{(0)} = \nabla f \cdot dI$ scalar level surfaces P path dwa) = VxA. da $\omega^{(1)} = \widetilde{A} - \widetilde{A} \cdot \widetilde{d}$ flow sheets vector $\omega^{(2)} = \widetilde{B} = \vec{B} \cdot d\vec{a}$ $d\omega^{(2)} = \nabla \cdot B d\tau$ flux tubes S surface p-vector $d\omega^{(3)} = 0$ $\omega^{(3)} = \widetilde{\rho} = \rho d\tau$ V volume subst boxes p-scalar edge of the world!

* Integrals - the overlap of a region on a form = integral of form over region ~ regions and forms are dual - they combine to form a scalar ~ generalized Stoke's therem: `d' and `d' are adjoint operators - they have the same effect in the integral Jdw = fw note: O = Jw = Jdw = Jdw = O R, dR R

Generalized Stokes Theorem

* Fundamental Theorem of Vector Calculus: Od-Id

$$\int_{a}^{b} \nabla \varphi \cdot dI = \int_{a}^{b} df = f(b) - f(a)$$

* Stokes' Thereom: 1d-2d

$$\nabla x \overrightarrow{A} \cdot d\overrightarrow{a} = \frac{\partial A_y}{\partial x} dx dy - \frac{\partial A}{\partial y} dx dy + ...$$

= $A_y(x^{+}) dy + A_y(x^{-})(-dy) + A_x(y^{+})(-dx) + A_x(y^{-}) dx + ...$
= $\Sigma \overrightarrow{A} \cdot d\overrightarrow{k}$ around boundary
+ other faces

* Gaus' Thereom: 2d-3d (divergence theorem)

$$\nabla \cdot \hat{B} d\tau = \frac{\partial B_x}{\partial x} dx dy dz + \frac{\partial B_y}{\partial y} dy dz dx + \frac{\partial B_z}{\partial z} dz dx dy$$

 $= B_x(x) dy dz + B_x(x)(-dy dz) + 4 other faces$
 $= \Sigma \hat{B} \cdot d\hat{a}$ around boundary

 $\frac{dl}{df+df+df} = \Delta f$ $\frac{df+df+df}{f=0} = 2 3$

* note: all interior f(x), flow, and flux cancel at opposite edges * proof of converse Poincare lemma: integrate form out to boundary * proof of gen. Stokes theorem: integrate derivative out to the boundary

 $\int dw = \int w \quad \iff \quad \int x \varphi \cdot d\overline{z} = \int \varphi \quad \int x \overline{A} \cdot d\overline{a} = \int A \cdot d\overline{z} \quad \int \overline{B} \cdot \overline{B} \cdot d\overline{a} = \int B \cdot d\overline{a}$

* example - integration by parts

$$\nabla \cdot \left(\frac{\hat{r}}{r^2}f\right) = \left(\nabla \cdot \frac{\hat{r}}{r^2}\right)f + \frac{\hat{r}}{r^2} \cdot \nabla f$$

$$\int_{\nu} \frac{\hat{r}}{r^2} \cdot \nabla f \, d\tau = \int_{\nu} \nabla \cdot \left(\frac{\hat{r}}{r^2}f\right) \cdot d\tau - \int_{\nu} \left(\nabla \cdot \frac{\hat{r}}{r^2}\right)f \, d\tau$$

$$\int_{\nu} \frac{1}{r^2} \frac{\partial f}{\partial r} r^2 dr \cdot d\Omega = \int_{\partial \nu} d\tau \cdot \frac{\hat{r}}{r^2}f - \int_{\nu} 4\pi S^3(\vec{r})f \, d\tau$$

$$\int d\Omega \int_{r=0}^{R} df = \int r^2 d\Omega \hat{r} \cdot \frac{\hat{r}}{r^2}f - 4\pi f(0)$$

$$\int d\Omega f(R) - f(0) = \int d\Omega f(R_{\ell}\theta, \phi) - 4\pi f(0)$$

$$4\pi \left[\langle f \rangle_{R} - f(0)\right] = 4\pi \left[\langle f \rangle_{R} - f(0)\right]$$

Section 1.5 - Dirac Delta Distribution

* Newton's law: yank = mass x jerk http://wikipedia.org/wiki/position_(vector)

* definition: $d\theta = \delta(x-x')dx$ is defined by its integral (a distribution, differential, or functional)

- $\delta(x) = \begin{cases} 0 & \text{if } x \neq 0 \\ \infty & \text{if } x = 0 \end{cases} \quad \text{it is a "distribution,"} \\ NOT a function! \end{cases}$
- * important integrals related to $\delta(x)$

$$\int_{-\infty}^{\infty} \Theta(x) f(x) dx = \int_{0}^{\infty} f(x) dx \quad \text{mask}^{*}$$

$$\int_{-\infty}^{\infty} S(x) f(x) dx = f(0) \quad \text{"slit"}$$

$$\int_{0}^{\infty} f'(x) f(x) dx = f(x) S(x) \int_{0}^{\infty} f'(x) S(x) dx = -f'(0)$$

* $\delta^{(\chi-\chi')}$ is the an "undistribution" - it integrates to a lower dimension

* $\delta(x-x')$ gives rise to boundary conditions - integrate the diff. eq. across the boundary $\nabla \cdot \vec{D} = \rho = \sigma(s,t) \delta(n)$ $\int_{n=0^{-}}^{0^{+}} dn \left(\frac{\partial D_{n}}{\partial n} + \frac{\partial F_{s}}{\partial s} + \frac{\partial F_{s}}{\partial t}\right) = \int_{0}^{0^{+}} \sigma(s,t) \delta(n) dn$ $\nabla \rightarrow \hat{n} \cdot \Delta \quad \rho \rightarrow \sigma \quad \vec{J} \rightarrow \vec{k}$ $\hat{n} \cdot \Delta \vec{D} = \sigma$

* $\delta(x-x')$ is the "kernel" of the identity transformation $f = I f \qquad f(x) = \int_{-\infty}^{\infty} dx' \, \delta(x-x') \, f(x')$ (component form) identity operator

* $\delta(x-x')$ is the continuous version of the "Kroneker delta" δ_{ij}

$$\alpha = I \alpha \qquad \Omega_{i} = \sum_{j=1}^{n} \delta_{ij} \alpha_{j} \qquad \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{pmatrix}$$

Linear Function Spaces

* functions as vectors (Hilbert space) ~ functions under pointwise addition have the same linearity property as vectors VECTORS FUNCTIONS $w_i = v_i + u_i$ $h = f + g \quad h(x) = f(x) + g(x)$ $\tilde{\mathcal{M}} + \tilde{\mathcal{V}} = \tilde{\mathcal{W}}$ ~ addition $\vec{V} = \underbrace{\mathcal{E}}_{i} V_{i} = \underbrace{V_{1} \hat{e}_{1} + V_{2} \hat{e}_{2} + \dots}_{index \ component \ basis \ vector} f(\mathbf{x}) = \int_{\mathbf{x}'=-\infty}^{\infty} f(\mathbf{x}') \cdot \underbrace{S(\mathbf{x}-\mathbf{x}')}_{index \ component \ basis \ function \ f(\mathbf{x}) = \int_{\mathbf{x}'=-\infty}^{\infty} f(\mathbf{x}') \cdot \underbrace{S(\mathbf{x}-\mathbf{x}')}_{index \ component \ basis \ function \ f(\mathbf{x}) = \int_{\mathbf{x}'=-\infty}^{\infty} f(\mathbf{x}') \cdot \underbrace{S(\mathbf{x}-\mathbf{x}')}_{index \ component \ basis \ function \ f(\mathbf{x}) = \int_{\mathbf{x}'=-\infty}^{\infty} f(\mathbf{x}') \cdot \underbrace{S(\mathbf{x}-\mathbf{x}')}_{index \ component \ basis \ function \ f(\mathbf{x}) = \int_{\mathbf{x}'=-\infty}^{\infty} f(\mathbf{x}') \cdot \underbrace{S(\mathbf{x}-\mathbf{x}')}_{index \ component \ basis \ f(\mathbf{x}) = \int_{\mathbf{x}'=-\infty}^{\infty} f(\mathbf{x}') \cdot \underbrace{S(\mathbf{x}-\mathbf{x}')}_{index \ component \ basis \ f(\mathbf{x}) = \int_{\mathbf{x}'=-\infty}^{\infty} f(\mathbf{x}') \cdot \underbrace{S(\mathbf{x}-\mathbf{x}')}_{index \ component \ basis \ f(\mathbf{x}) = \int_{\mathbf{x}'=-\infty}^{\infty} f(\mathbf{x}') \cdot \underbrace{S(\mathbf{x}-\mathbf{x}')}_{index \ component \ basis \ f(\mathbf{x}) = \int_{\mathbf{x}'=-\infty}^{\infty} f(\mathbf{x}) \cdot \underbrace{S(\mathbf{x}-\mathbf{x}')}_{index \ component \ basis \ f(\mathbf{x}) = \int_{\mathbf{x}'=-\infty}^{\infty} f(\mathbf{x}) \cdot \underbrace{S(\mathbf{x}-\mathbf{x}')}_{index \ component \ basis \ f(\mathbf{x}) = \int_{\mathbf{x}'=-\infty}^{\infty} f(\mathbf{x}) \cdot \underbrace{S(\mathbf{x}-\mathbf{x}')}_{index \ component \ basis \ f(\mathbf{x}) = \int_{\mathbf{x}'=-\infty}^{\infty} f(\mathbf{x}) \cdot \underbrace{S(\mathbf{x}-\mathbf{x}')}_{index \ component \ component \ basis \ f(\mathbf{x}) = \int_{\mathbf{x}'=-\infty}^{\infty} f(\mathbf{x}) \cdot \underbrace{S(\mathbf{x})}_{index \ component \ componen$ ~ expansion or $f(x) = \sum_{i=1}^{\infty} f_i \cdot \phi_i(x)$ ~ graph ~ inner product $\langle f | g \rangle = \int dx f(x) g(x)$ (metric, symmetric bilinear product) $\vec{\nabla} \cdot \vec{u} = \sum_{i=1}^{N} V_i u_i$ $\hat{e}_i \cdot \hat{e}_j = \delta_{ij}$ $\int_{-\infty}^{\infty} \phi_{i}(x) \phi_{j}(x) = \delta_{ij} \qquad \int_{x'=-\infty}^{\infty} \delta(x-x') \delta(x'-y) = \delta(x-y)$ ~ orthonormality (independence) $\sum_{i=0}^{\infty} \phi_i(x) \phi_i(y) = \int_{x'=-\infty}^{\infty} \delta(x-x') \delta(x'-y) = \delta(x-y)$ ~ closure (completeness) $\hat{\mathcal{E}}_{i=1} \hat{e}_{i} \hat{e}_{i} = I$ ~ linear operator f = Hg $f(x) = \int_{-\infty}^{\infty} dx' H(x, x') g(x')$ ũ=Av $U_i = A_{ij} V_j$ (matrix) $\tilde{f}(k) = \frac{1}{2\pi} \int dx \, e^{ikx} f(x)$ ~ orthogonal rotation $\times' = \mathbb{R} \times$ (change of coordinates) $\int dk \, e^{ikx} e^{ikx'} = \int dk \, e^{ik(x-x')} = 2\pi \, S(x-x')$ $R^TR = I$ (Fourier transform) ~ eigen-expansion $H\phi(x) = \lambda\phi(x)$ Av= vλ (stretches) $A \vee = \vee W$ (Sturm-Liouville problems) (principle axes) <u>SF[ρ(X)]</u> (functional Sp minimization) ~ gradient, $\nabla f = \frac{df}{dr}$ functional derivative

* Sturm-Liouville equation - eigenvalues of function operators (2nd derivative)

$$\mathcal{L}[y] = -\frac{d}{dx}[p(x)\frac{d}{dx}y] + q(x) = \lambda w(x) y \qquad Bc: y(a), y(b)$$

~ there exists a series of eigenfunctions $y_n(x)$ with eigenvalues λ_n ~ eigenfunctions belonging to distinct eigenvalues are orthogonal $\langle y_i | y_i \rangle = \delta_{ij}$

Green Functions G(x,x)

- * Green's functions are used to "invert" a differential operator ~ they solve a differential equation by turning it into an integral equation
- * You already saw them last year! (in Phy 232) ~ the electric potential of a point charge

$$\begin{split} & \Im(51: \quad \nabla \cdot \frac{\hat{r}}{r^2} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{1}{r^2} \right) = 0 \\ & \text{a)} \quad \frac{1}{r^2} \to \infty \text{ at } r = 0 \quad \text{`singularity''} \\ & \text{b)} \quad \int \nabla \cdot \frac{\hat{r}}{r^2} d\tau = \oint d\bar{u} \cdot \frac{\hat{r}}{r^2} = \oint d\bar{u} 2r^2 \frac{1}{r^2} = 4\pi \\ & \text{independent of volume if Θ inside} \\ & \text{thus} \quad \nabla \cdot \frac{\hat{r}}{r^2} = 4\pi S^3(\bar{r}) \end{split}$$

* Green's functions are the simplest solutions of the Poisson equation

$$G(\vec{r},\vec{r}) \equiv G(\mathfrak{H}) = \frac{-1}{4\pi\mathfrak{H}} = \nabla^2 S^3(\tilde{\mathfrak{X}})$$

~ is a special function which can be used to solve Poisson equation symbolically using the "identity" nature of $S^3(\vec{r} - \vec{r}') = S^3(\vec{z})$

~ intuitively, it is just the "potential of a point source"

$$\nabla^2 G(\mathcal{H}) = \nabla \cdot \nabla \frac{-1}{4\pi \mathcal{H}} = \nabla \cdot \frac{\mathcal{L}}{4\pi \mathcal{L}^2} = \mathcal{S}^3(\mathcal{H}) \qquad \mathcal{I} = \mathcal{F} - \mathcal{F}^{\prime}$$

Let
$$V = \int_{V} G(x) \underbrace{\rho(\vec{r}')}_{\mathcal{E}_{o}} d\tau'$$
 (solution to Poisson's eq.)
 $\nabla^{2} V = \int_{V} \underbrace{\rho(\vec{r})}_{\mathcal{E}_{o}} \nabla^{2} G(\vec{r} - \vec{r}') d\tau' = \int_{V'} \underbrace{\rho(\vec{r}')}_{\mathcal{E}_{o}} S^{3}(\vec{r} - \vec{r}') d\tau' = -\underbrace{\rho(\vec{r}')}_{\mathcal{E}_{o}}$

* this generalizes to one of the most powerful methods of solving problems in E&M
~ in QED, Green's functions represent a photon 'propagator'
~ the photon mediates the force between two charges
~ it `carries' the potential from charge to the other

$$U = \int p V dt = \int p f p dt dt'$$

P P P'

Section 1.6 - Helmholtz Theorem

* orthogonal projections
$$P_{\parallel}$$
 and P_{\perp} : a vector \vec{n} divides the space \vec{X} into $\vec{X}_{\parallel n} \oplus \vec{X}_{\perp n}$
geometric view: dot product $\hat{h} \cdot \hat{\pi}$ is length of \vec{y} along \hat{h}
 $Projection operator: $P_{\parallel} = \hat{h} \hat{h}$. acts on $x: P_{\parallel} \hat{\pi} = \vec{\alpha}_{\parallel 1} = \hat{h} \hat{h} \cdot \hat{\pi} \cdot \hat{\pi}$
 \sim orthogonal projection: $\hat{h} \times$ projects \perp to \hat{h} and rotates by $q0^{\circ}$
 $\hat{\chi}_{\perp} = -\hat{h} \times (\hat{h} \times \hat{\chi}) = P_{\perp} \hat{\pi}$
 $P_{\perp} = -\hat{h} \times \hat{h} \times P_{\perp} = -\hat{h} \times \hat{h} \times P_{\perp} + P_{\perp} = \hat{h} \hat{h} \cdot -\hat{h} \times \hat{h} \times = \mathbf{I}$
* longtudinal/transverse separation of Laplacian (Hodge decomposition)
 $\overrightarrow{\nabla F} = \bigcap_{\parallel}$
 \Rightarrow is there a solution to these equations for $\vec{F}(r)$
given fixed source fields $p(\hat{r})$ and $\vec{f}(\vec{r}) ? YES!$ (compare $\#\lambda\hat{h} \#$)
 $\sim proof:$
 $\nabla^{2} \vec{F} = \nabla \nabla \cdot \vec{F} - \nabla \chi \nabla \chi \vec{F}$
 \Rightarrow formally, $\vec{F} = -\nabla \left(-\nabla^{-1} \nabla \cdot \vec{F}\right) + \nabla \chi \left(-\nabla^{-2} \nabla \chi \vec{F}\right)$
 \sim thus $\nabla^{-2} \hat{S}(\hat{k}) = -\frac{1}{4\pi \tau h} \equiv \hat{G}(\hat{k})$ (see next page)
 $\hat{G} = -\frac{1}{4\pi \tau h}$ is Green fn
 \sim use the \hat{S} -identity $p(\hat{r}) = \int dt' \left(\vec{\nabla}^{2} \hat{S}(\hat{k}) \right) \hat{p}(\hat{r}) = \int dt' \frac{d(r)}{4\pi \tau h} = \frac{1}{4\pi \tau h} \int \frac{d\alpha}{h}$
 $\hat{A}(\hat{r}) \equiv -\nabla^{-2} \hat{J}(\hat{r}) = \int dt' (-\nabla^{-2} \hat{S}(\hat{k}) - \hat{J}(\hat{r}) = \int dt' \frac{d(r)}{4\pi \tau h} = \frac{1}{4\pi \tau h} \int \frac{d\alpha}{h}$
 \sim thus any field can be decomposed into L/T parts $\vec{F} = -\nabla (-\nabla + \nabla \chi \vec{A})$ active $\nabla_{\perp} \hat{A}$ defined above
 $SCALAR POTENTIAL \bigvee$$

* Theorem: the following are equivalent definitions of an "irrotational" field:

a) $\nabla x \vec{F} = \vec{O} \quad curl-less$ b) $\vec{F} = -\nabla V$ where $V = \int \frac{d\tau' \vec{\nabla} \cdot \vec{F}}{4\pi r}$ c) $V(\vec{r}) = \int_{-\vec{F}}^{\vec{V}} \vec{F} \cdot \vec{J} \vec{J}$ is independent of path d $f \vec{F} \cdot \vec{l} = 0$ for any closed path * Gauge invariance:

if
$$\vec{F} = -\nabla V_1$$
 and also $\vec{F} = -\nabla V_2$
then $\nabla (V_2 - V_3) = 0$ and $V_2 = V_1 = V_6$ is constant
("ground potential")

VECTOR POTENTIAL A

- * Theorem: the following are equivalent definitions of a "solenoidal" field:
 - a) ∇•Ê=0 divergence-less b) $\not\models = \nabla x \vec{A}$ where $\vec{A} = \int \frac{d\tau \nabla x \vec{F}}{4\tau v r}$ C) $?=\int_{S} \vec{F} \cdot d\vec{a}$ with ∂S fixed is independent of surface d) $\oint \vec{F} \cdot d\vec{a} = 0$ for any closed surface

Section 2.1 - Coulomb's Law

* Electric charge (duFay, Franklin)
~ +,- equal & opposite (QCD: r+g+b=0)
~ e=1.6×10⁻¹⁹ C, quantized (q⁻/₂×2×10⁻²¹ e)
~ locally conserved (continuity)

Seventibly, Chance has thrown in my Way another Principle, more univerfal and remarkable than the preceding one, and which cafts a new Light on the Subject of Electricity. This Principle is, that there are two diffinet Electricities, very different from one another; one of which I call vitreous Electricity, and the other refinous Electricity. The first is that of Glafs, Rock-Crystal, Precious Stones, Hair of Animals, Wool, and many other Bodies: The fecond is that of Amber, Copal, Gum-Lack, Silk, Thread, Paper, and a vaft Number of other Substances. Charles François de Cisternay DuFay, 1734

http://www.sparkmuseum.com/BOOK_DUFAY.HTM

~ linear in both g & Q (superposition)

~ central force RER-FI

* only for static charge distributions (test charge may move but not sources)

- a) Coulomb's law $\vec{F} = \frac{1}{4\pi\varepsilon_0} \frac{q}{\chi^2} \hat{\chi}$ b) Superposition $\vec{F} = \vec{F}_1 + \vec{F}_2 + \dots$
- ~ Coulomb: torsion balance

~ Cavendish: no electric force inside a hollow conducting shell $dq_2 = \sigma da$ $= \sigma dD \cdot r^2$

- ~ Born-Infeld: vacuum polarization violates superposition at the level of $d^2 = \frac{1}{137^2}$
- ~ inverse square (Gauss') law $\overline{\mathfrak{R}^{2}}$ ~ units: defined in terms of magnetostatics $\mathcal{E}_{o} = 8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} = \frac{1}{\mathcal{N}_{o} \mathrm{C}^{2}}$ $|C = |A \cdot S \qquad F_{A} = 2 \times 10^{-7} N_{m}$ (for parallel wires 1 m apart carrying 1 A each)

~ rationalized units to cancel 4π in $\nabla \cdot \frac{\hat{\mathcal{H}}}{m_2} = 4\pi \hat{\mathcal{S}}(\hat{\mathcal{F}})$

$$\vec{E} = \frac{1}{4\pi\epsilon_{o}} \left(\frac{q_{1}\hat{\chi}_{1}}{\chi_{1}^{2}} + \frac{q_{2}\hat{\chi}_{2}}{\chi_{2}^{2}} + \dots \right) Q = Q \vec{E}$$

$$\vec{E} = \frac{1}{4\pi\epsilon_{o}} \sum_{i} \frac{q_{i}\hat{\chi}_{i}}{\chi_{i}^{2}} = \frac{1}{4\pi\epsilon_{o}} \int_{V} \frac{\rho(\vec{r}')dc'\hat{\chi}}{\chi_{2}^{2}} = \frac{1}{4\pi\epsilon_{o}} \int_{V} \frac{dq'\hat{\chi}}{\chi_{2}^{2}}$$

$$\vec{dq}' \rightarrow q_{i} = q(\vec{r}_{i}') \text{ or } \lambda(\vec{r})dt' \text{ or } \nabla(\vec{r}')da' \text{ or } \rho(\vec{r}')d\tau'$$

* Example (Griffiths Ex. 2.1)

~ we want a vector field,

~ action at a distance:

but Fonly at test charge

the field 'caries' the force from source pt. to field pt.

* Electric field

$$\vec{E} = \frac{1}{4\pi\epsilon_{o}} \stackrel{2}{\sim} \int_{x=0}^{L} \frac{dq' \hat{\pi}}{\hat{x}^{3}} = \frac{1}{4\pi\epsilon_{o}} \int_{0}^{L} \frac{2\lambda dx' \cdot z\hat{z}}{(z^{2} + x'^{2})^{3/2}} + O\hat{x}$$

$$= \hat{z} \frac{2\lambda}{4\pi\epsilon_{o}z} \int \frac{\sec^{2}\theta d\theta}{\sec^{3}\theta} \qquad [+\tan^{2}\theta - \sec^{2}\theta]$$

$$= \hat{z} \frac{2\lambda}{4\pi\epsilon_{o}z} \int \frac{\sec^{2}\theta d\theta}{x_{e}} \qquad [+\tan^{2}\theta - \sec^{2}\theta]$$

$$= \hat{z} \frac{2\lambda}{4\pi\epsilon_{o}z} \int \frac{\sin\theta}{x_{e}} \int_{x=0}^{L} dx' = z \tan\theta$$

$$dx' = z \sec^{2}\theta d\theta$$

$$= \hat{z} \frac{2\lambda}{4\pi\epsilon_{o}z} \int \frac{L}{\sqrt{z^{2} + L^{2}}} \qquad z^{3} = (z^{2} + x'^{2})^{3/2}$$

$$= \hat{z} \frac{2\lambda}{4\pi\epsilon_{o}z} \frac{L}{\sqrt{z^{2} + L^{2}}} \qquad z^{3} \sec^{2}\theta$$

$$qs z \rightarrow \infty \vec{E} \approx \frac{1}{4\pi\epsilon_{o}} \frac{2\lambda L}{z^{2}} \qquad qs L \rightarrow \infty \vec{E} \approx \frac{1}{4\pi\epsilon_{o}} \frac{2\lambda}{z}$$

Section 2.2 - Divergence and Curl of E

* 5 formulations of electrostatics

* Divergence theorem: relationship between differential and integral forms of Gauss' law

$$\begin{split}
\bar{\Phi}_{E} = \int_{\partial V} \vec{E} \cdot da &= \oint_{4\pi \xi t^{2}} \cdot \hat{t} t^{2} d\Omega = \underbrace{\frac{2}{\xi}}_{V} \rightarrow \int_{V} \underbrace{\frac{dq}{\xi}}_{\xi} \\
\int_{V} \nabla \cdot \vec{E} \, d\tau &= \int_{V} P_{\xi} d\tau
\end{split}$$

~ since this is true for any volume, we can remove the integral from each side

$$\nabla \cdot \vec{E} = \rho_{e}$$

- ~ all of electrostatics comes out of Coulomb's law & superposition principle
- ~ we use each of the major theorems of vector calculus to rewrite these into five different formulations - each formulation useful for solving a different kind of problem ~ geometric pictures comes out of schizophrenetic personalities of fields:
- * FLOW (Equipotential surfaces) $\begin{aligned} & \mathcal{E}_{E} = \int \vec{E} \cdot d\vec{l} & \sim \text{ integral ALONG the field} \\ & \sim \text{ potential} = \text{ work / charge} \\ & \sim \mathcal{E}_{E} \text{ equals # of equipotentials crossed} \\ & \sim \Delta \mathcal{E}_{E} = 0 \text{ along an equipotential surface} \\ & \sim \text{ density of surfaces} = \text{ field strength} \end{aligned}$
- * FLUX (Field lines)

$$\underline{\Psi}_{E} \equiv \int \vec{E} \cdot d\vec{l} \quad \sim integral \ ACROSS \ the \ field \\ \sim potential = work \ / \ charge$$

 $d\Phi = \vec{E} \cdot d\vec{a} = \# \text{ of lines through area}$ $\vec{E} = \frac{d\Phi}{d\vec{a}}$ ~ closed loop

$$\int d\Phi_{\rm E} = \# \text{ of lines through loop}$$

~ closed surface

\$d€_E = net # of lines out out of surface = # of charges inside volume

E, is unit of proportionality of flux to charge

Section 2.3 - Electric Potential

- * two personalities of a vector field: $Flux = \Phi_{\rm E} = \int_{\rm S} \tilde{E} \cdot d\bar{a}$ (streamlines) through an area Dr. Jekyl and Mr. Hyde $Flow = \mathcal{E}_{\rm E} = \int_{\rm P} \tilde{E} \cdot d\bar{a}$ (equipotentials) downstream
- * direct calculation of flow for a point charge

$$\begin{aligned} \mathcal{E}_{E} &= \int_{r=\alpha}^{E} \cdot d\overline{l} = \int_{\mathcal{V}} \frac{da_{1}'}{4\pi\varepsilon_{0}} \int_{r=\alpha}^{b} \frac{\widehat{\mathcal{X}} \cdot d\overline{l}}{\mathscr{Y}^{2}} & \text{note: this is a perfect} \\ &= \int_{\mathcal{V}} \frac{da_{1}'}{\varepsilon_{0}} \int_{r=\alpha}^{b} \frac{\widehat{\mathcal{X}} \cdot d\overline{l}}{\mathscr{Y}^{2}} & \text{note: this is a perfect} \\ &\text{differential (gradient)} \\ &= \int_{\mathcal{V}} \frac{da_{1}'}{\varepsilon_{0}} \int_{r=\overline{r}}^{b} \frac{\widehat{\mathcal{X}} \cdot d\overline{l}}{\varepsilon_{0}} &= V(\overline{r}) \Big|_{\alpha}^{b} \\ &= V(\overline{r}) \Big|_{\alpha}^{b} &= V(\overline{r}) \Big|_{\alpha}^{b} \\ &= \sqrt{\mathcal{X}} = \widehat{\mathcal{X}} \end{aligned}$$

- ~ open path: note that this integral is independent of path thus $V(\vec{r}) \equiv -\mathcal{E}_{E} = \int_{\vec{r}}^{\vec{r}} \vec{E} \cdot d\vec{l}$ is well-defined by FTVC: $\Delta V = \int_{\vec{r}}^{\vec{r}} \nabla V \cdot d\vec{l}$ $\vec{E} = -\nabla V$ ~ ground potential $V(\vec{r}_{o}) = 0$ (constant of integration)
- ~ closed loop (Stokes theorem) $\mathcal{E}_{E} = \oint_{S} \vec{E} \cdot d\vec{l} = \int_{S} \nabla x \vec{E} \cdot d\vec{a} = 0 \quad \langle \Rightarrow \quad \nabla x E = 0$ for any surface S
- * Poincaré lemma: if $\vec{E} = -\nabla V$ then $\nabla x \vec{E} = -\nabla x \nabla V = 0$ ~ converse: if $\nabla x \vec{E} = 0$ then $\vec{E} = -\nabla V$ so $\vec{E} = -\nabla V \iff \nabla x \vec{E} = 0$
- * Poisson equation $\nabla \cdot \mathcal{E}_{\delta} E = -\nabla \cdot \mathcal{E}_{\delta} \nabla V = \rho$ or $\nabla^2 V = \rho/\mathcal{E}_{\delta}$ ~ next chapter devoted to solving this equation - often easiest for real-life problems
 - ~ a scalar differential equation with boundary conditions on E_p or V
 - ~ inverse (solution) involves: a) the solution for a point charge (Green's function)

$$\begin{split} & \forall (\vec{r}) = \int_{\mathcal{V}} \frac{dq^{\prime}}{4\pi\epsilon_{o}\mathcal{R}} = \int \frac{dq^{\dagger}}{\epsilon_{o}} G(\vec{x}) \quad \text{where} \quad G(\vec{x}) = \frac{1}{4\pi\epsilon} \\ & \forall^{2}G = \nabla \cdot \nabla \frac{1}{4\pi\epsilon} = \nabla \cdot \frac{-\hat{x}}{4\pi\epsilon^{2}} = -S^{3}(\vec{x}) \\ \end{split}$$

b) an arbitrary charge distribution is a sum of point charges (delta functions)

$$\begin{split} \nabla \nabla &= \int \frac{dq'}{\varepsilon_{\circ}} \nabla^{2} G = \int_{\nabla'} \frac{\rho(\vec{r}') d\tau'}{\varepsilon_{\circ}} S^{3}(\vec{r}_{\circ}) = \int_{\Sigma_{\circ}} \frac{\rho(\vec{r}') d\tau'}{\varepsilon_{\circ}} S^{3}(\vec{r}_{\circ}) = \int_{\nabla'} \frac{\rho(\vec{r}') d\tau'}{\varepsilon_{\circ}} S^{3}(\vec{r}_{\circ}) = \int_{\nabla'} \frac{dq'}{\varepsilon_{\circ}} S^{3}(\vec{r}_{\circ}) \\ going backwards: \\ \nabla &= \nabla^{-2} \frac{\rho(\vec{r}')}{\varepsilon_{\circ}} = \int_{\nabla'} \frac{\rho(\vec{r}') d\tau'}{\varepsilon_{\circ}} \nabla^{2} S^{3}(\vec{r}_{\circ}) = \int_{\nabla'} \frac{dq'}{\varepsilon_{\circ}} G(\vec{r}_{\circ}) \\ \approx this is an essential component of the Helmholtz theorem \\ \vec{E} = -\nabla \left(-\nabla^{2} \nabla \cdot \vec{E} \right) + \nabla \times \left(-\nabla^{2} \nabla \times \vec{E} \right) = -\nabla \left(-\nabla^{2} C_{\varepsilon_{\circ}} \right) \\ \neq \vec{E} = -\nabla \left(-\nabla^{2} \nabla \cdot \vec{E} \right) + \nabla \times \left(-\nabla^{2} \nabla \times \vec{E} \right) = -\nabla \left(-\nabla^{2} C_{\varepsilon_{\circ}} \right) \\ = -\nabla \left(-\nabla^{2} C_{\varepsilon_{\circ}} \right) \\ = -\nabla \left(-\nabla^{2} C_{\varepsilon_{\circ}} \right) \\ = -\nabla \nabla \nabla \cdot \vec{E} \\ \Rightarrow \rho = -\nabla \nabla \nabla \cdot \vec{E} \\ \Rightarrow \rho = -\nabla \nabla \nabla \cdot \vec{E} \\ = -\nabla \nabla \cdot \vec{E}$$

Field Lines and Equipotentials

- * for along an equipotential surface: fo field lines are normal to equipotential surfaces
- * dipole "two poles" the word "pole" has two different meanings: (but both are relevant) a) opposite (+ vs - , N vs S, bi-polar) b) singularity (v/r has a pole at r=0)

* effective monopole (dominated by -29 far away)

* quadrupole (compare HW3 #2)

Section 2a - Examples

* show that $\nabla \cdot \vec{E} = \rho_{\mathcal{E}_{0}}$ from Coulomb's law note that $\nabla = \begin{pmatrix} \partial \\ \partial x \end{pmatrix}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \end{pmatrix} = \begin{pmatrix} \partial \\ \partial (x-x) \end{pmatrix}, \frac{\partial}{\partial (y-y')}, \frac{\partial}{\partial (z-z)} \end{pmatrix} = \nabla_{\mathcal{H}}$ (if \vec{x} ! fixed) $\nabla \cdot \int \frac{dq'\mathcal{H}}{4\pi\epsilon_{0}Jz^{2}} = \nabla \cdot \int \frac{\rho(\vec{r})d\tau'\mathcal{H}}{\sqrt{4\pi\epsilon_{0}Jz^{2}}} = \frac{1}{4\pi\epsilon_{0}} \int \rho(\vec{r})d\tau' \nabla_{\mathcal{H}} \cdot \frac{\hat{\mathcal{H}}}{\mathcal{H}^{2}}$ $= \frac{1}{4\pi\epsilon_{0}} \int \rho(\vec{r}')d\tau' 4\pi \delta^{3}(\vec{x}) = \rho(\vec{r})/\epsilon_{0}$

* derive Coulomb's law from the differential field equations

$$\nabla \cdot \vec{E} = (\vec{k}_{e}, \nabla \times \vec{E} = 0) \quad \nabla^{2} = \nabla \nabla \cdot - \nabla \times \nabla \times$$

$$\vec{E} = -\nabla \left(-\nabla^{2} \nabla \cdot \vec{E} \right) + \nabla \times \left(-\nabla^{2} \nabla \times \vec{E} \right) = -\nabla \int \frac{dt' \nabla' \cdot \vec{E}(\vec{r}')}{4\pi x} = -\nabla \int \frac{dt' \rho(\vec{r}')}{4\pi \varepsilon_{e} x}$$

$$= \int \frac{dt' \rho(\vec{r}')}{4\pi \varepsilon_{e}} \quad \nabla_{e} = \int \frac{dt' \rho(\vec{r}')}{4\pi \varepsilon_{e}} \quad \hat{\chi}_{e} = \int \frac{dt' \hat{\chi}}{4\pi \varepsilon_{e}} \quad \hat{\chi}_{e}$$

* show that the differential and integral field equations are equivalent

$$\begin{split}
\bar{\Psi}_{E} = \Psi_{E_{o}} \iff \nabla \cdot E = \rho_{E_{o}} & \bar{\Psi}_{E} = \oint d\bar{a} \cdot \vec{E} = \int_{V} \nabla \cdot \vec{E} d\tau \\
\sim apply the divergence theorem \\
\sim since Gauss' law holds for any volume, \\
it is only true if the integrands are equal
 \end{aligned}$$

* Griffiths 2.6 find potential of spherical charge distribution

$$\int \vec{E} \cdot d\vec{a} = \int P_{\mathcal{E}_{o}} d\tau \qquad 4\pi r^{2} E(r) = \begin{cases} 9/\mathcal{E}_{o} & \text{if } r > r' \\ 0 & \text{if } r < r' \end{cases}$$

$$if r > r' \quad V(r) = \int_{\infty}^{r} \vec{E} \cdot d\vec{l} = \int_{\infty}^{r} \frac{-2\hat{r}}{4\pi\epsilon_{o}r^{2}} \cdot \hat{r} dr = \frac{2}{4\pi\epsilon_{o}} \frac{+1}{r} \Big|_{\infty}^{r} = \frac{2}{4\pi\epsilon_{o}r}$$

$$if r < r' \qquad V(r) = V(r') + \int_{r'}^{r} \vec{E} \cdot d\vec{l} = V(r') + \int_{r'}^{0} = V(r')$$

* Griffiths 2.7 integrate potential due to spherical charge distribution

$$4\pi\varepsilon V = \int \frac{\sigma' da'}{r}$$

$$= \int_{u=-1}^{1} 2\pi r'^{2} \sigma \frac{du}{r}$$

$$= \int_{u=-1}^{1} \frac{-dr}{rr'}$$

$$= \frac{q}{2} \int_{u=-1}^{1} \frac{-dr}{rr'}$$

$$= \frac{q}{2rr'} \left[-|r-r'| + |r+r'| \right]$$

$$= \frac{q}{2rr'} \left\{ \frac{-r+r'+r+r'}{r+r'} + \frac{r}{r+r'} \right\}$$

$$= \frac{q}{2rr'} \left\{ \frac{-r+r'+r+r'}{r+r'} + \frac{r}{r+r'} + \frac{r}{r+r'} \right\}$$

$$V(r) = \frac{q}{4\pi\varepsilon_{0}} \left\{ \frac{y'r}{r} + \frac{y'r}{r+r'} \right\}$$

FV(r)

* Griffiths 2.8 find the energy due to a spherical charge distribution

a)
$$W = \frac{1}{2} \int \tau \cdot V = \frac{1}{2} q V = \frac{1}{2} \frac{q^2}{4\pi\epsilon_s r'}$$

b) $W = \frac{\epsilon_s}{2} \int E^2 d\tau = \frac{\epsilon_s}{2} \int r' dr d\Omega \left(\frac{q}{4\pi\epsilon_s r^2}\right)^2$
 $= \frac{q^2}{2 \cdot 4\pi\epsilon_s} \int \frac{dr}{r'} = \frac{q^2}{2 \cdot 4\pi\epsilon_s r'}$

* Quiz: calculate field at origin from a hemispherical charge distribution

$$\vec{E} = \int \frac{dq}{4\pi\epsilon_0} \hat{\chi}_2^2 = \int_{\theta=0}^{T/2} \int_{\theta=0}^{\pi} \frac{q}{4\pi\epsilon_0} \frac{d\Omega}{R} (-x\hat{x} - y\hat{y} - z\hat{z}) \qquad dq = q \frac{d\Omega}{4\pi\epsilon_0} = \tau da$$

$$= \frac{-q\hat{z}}{2\pi\epsilon_0} \hat{\chi}_2^2 = \int_{\theta=0}^{T/2} \frac{F/2}{4\pi\epsilon_0} R^3 \qquad R = -q\hat{z}$$

$$= \frac{-q\hat{z}}{2\pi\epsilon_0} \hat{\chi}_2^2 = \int_{\theta=0}^{T/2} \frac{F/2}{R\cos\theta(-d\cos\theta)} \int_{\theta=0}^{2\pi\epsilon_0} \frac{R}{8\pi\epsilon_0} R^2 \qquad R = -q\hat{z}$$

* energy of a point charge in a potential * analogy with gravity Ĕ=qĒ $W = \int_{a}^{b} \vec{E} \cdot d\vec{l} = -Q \int_{a}^{b} \vec{E} \cdot d\vec{l} = Q \Delta V$ Ê=mĝ W = mgh W=qEd $W(\vec{r}) = Q V(\vec{r}) \qquad \forall (\varpi) \equiv 0$ potential danger potential=\[

* energy of a distribution of charge $q_1, q_2, ...$

$$W = \frac{1}{4\pi\varepsilon_{o}} \begin{cases} q_{a} \frac{q_{1}}{\lambda_{12}} + q_{3} \left(\frac{q_{1}}{\lambda_{13}} + \frac{q_{2}}{\lambda_{12}} \right) + q_{4} \left(\frac{q_{1}}{\lambda_{44}} + \frac{q_{2}}{\lambda_{24}} + \frac{q_{3}}{\lambda_{34}} \right) + \dots \end{cases}$$

$$= \frac{1}{4\pi\varepsilon_{o}} \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{q_{i}q_{i}}{\lambda_{ij}} = \frac{1}{4\pi\varepsilon_{o}} \frac{1}{a} \sum_{\substack{i=1\\ i\neq j}}^{n} \frac{q_{i}q_{i}}{\lambda_{ij}} + \frac{q_{2}}{\lambda_{24}} + \frac{q_{3}}{\lambda_{34}} \right) + \dots \end{cases}$$

$$= \frac{1}{a} \sum_{i=1}^{n} q_{i} \sum_{j=i+1}^{n} \frac{q_{i}q_{i}}{\lambda_{ij}} = \frac{1}{4\pi\varepsilon_{o}} \frac{1}{a} \sum_{\substack{i=1\\ i\neq j}}^{n} \frac{q_{i}q_{i}}{\lambda_{ij}} + \frac{q_{2}}{\lambda_{34}} + \frac{q_{3}}{\lambda_{34}} + \dots \end{cases}$$

$$= \frac{1}{a} \sum_{i=1}^{n} q_{i} \sum_{j=i+1}^{n} \frac{q_{i}q_{i}}{\lambda_{ij}} = \frac{1}{a} \sum_{\substack{i=1\\ i\neq j}}^{n} \frac{q_{i}q_{i}}{\lambda_{ij}} + \frac{q_{2}}{\lambda_{34}} + \frac{q_{3}}{\lambda_{34}} + \dots \end{cases}$$

$$W = \frac{1}{a} \sum_{i=1}^{n} q_{i} \sum_{j=i+1}^{n} \frac{q_{i}q_{j}}{\lambda_{ij}} = \frac{1}{a} \sum_{\substack{i=1\\ i\neq j}}^{n} q_{i} V_{i} (r_{i}) \qquad W = \frac{1}{a} \sum_{i=1}^{n} Q_{i} V_{i}$$

$$W = \frac{1}{a} \sum_{i=1}^{n} Q_{i} V_{i}$$

$$W = \frac{1}{a} \sum_{i=1}^{n} Q_{i} V_{i}$$

7

 $W = \frac{\varepsilon_0}{2} \int E^2 d\tau$

 $\frac{dW}{dr} = \frac{\varepsilon_0 E^2}{a}$

* energy density stored in the electric field - integration by parts

$$\nabla \cdot \forall \vec{E} = \nabla \forall \cdot \vec{E} + \forall \nabla \cdot \vec{E} = -\vec{E} \cdot \vec{E} + \forall p_{\ell e_0}$$
$$O = \int d\vec{a} \cdot (\forall \vec{E}) = \int \nabla \cdot \forall \vec{E} = \int -\vec{E}^2 + \forall p_{\ell e_0} d\tau$$

* work does work follow the principle of superposition ~ we know that electric force, electric field, and electric potential do

$$\vec{F} = \vec{F}_1 + \vec{F}_2 = q(\vec{E}_1 + \vec{E}_2 +) = -q \nabla(V_1 + V_2 + ...)$$

~ energy is quadratic in the fields, not linear

$$W_{tot} = \frac{\mathcal{E}_0}{\mathcal{A}} \int \vec{E}^2 d\tau = \frac{\mathcal{E}_0}{\mathcal{A}} \int \vec{E}_1^2 + \vec{E}_2^2 + \vec{\lambda} \vec{E}_1 \cdot \vec{E}_2 d\tau$$
$$= W_1 + W_2 + \mathcal{E}_0 \int \vec{E}_1 \cdot \vec{E}_2 d\tau$$

~ the cross term is the `interaction energy' between two charge distributions (the work required to bring two systems of charge together)

Section 2.5 - Conductors

* conductor

~ has abundant "free charge", which can move anywhere in the conductor

- * types of conductors
 i) metal: conduction band electrons, ~ 1 / atom
 - ii) electrolyte: positive & negative ions
- * electrical properties of conductors i) electric field = 0 inside conductor therefore V = constant inside conductor
 - ii) electric charge distributes itself
 - all on the boundary of the conductor iii) electric field is perpendicular to the surface just outside the conductor

* induced charges

- ~ free charge will shift around charge on a conductor ~ induces opposite charge on near side of conductor to cancel out field lines inside the conductor
- ~ Faraday cage: external field lines are shielded inside a hollow conductor
- ~ field lines from charge inside a hollow conductor are "communicated" outside the conductor by induction (as if the charge were distributed on a solid conductor) compare: displacement currents, sec. 7.3

* electrostatic pressure

~ on the surface: $\vec{F}_{A} = \vec{f} = \sigma(\vec{E}_{patch} + \vec{E}_{other}) = \frac{1}{2}\sigma(\vec{E}_{inside} + \vec{E}_{outside})$ ~ for a conductor: $\vec{E}_{inside} = O$ $\vec{E}_{out} = \sigma_{\mathcal{E}_{o}}$ $P = f = \frac{\sigma^{2}}{2\mathcal{E}_{o}} = \frac{\varepsilon}{2}E^{2}$

~ note: electrostatic pressure corresponds to energy density $P \approx W$ both are part of the stress-energy tensor

Capacitance

* capacitance

- ~ a capacitor is a pair of conductors held at different potentials, stores charge
- ~ electric FLOW from one conductor to the other equals the POTENTIAL difference
- ~ electric FLUX from one conductor to the other is proportional to the CHARGE

$$C = Q_{AV} = \underbrace{\varepsilon_{e} \overline{\Sigma}_{E}}_{\mathcal{E}_{E}} \qquad Q = \int d\overline{a} \cdot \varepsilon_{e} \overline{E} = \varepsilon_{e} \overline{\Sigma}_{E} \quad (closed surface)$$
$$M = \int d\overline{l} \cdot \overline{E} = \varepsilon_{E} \quad (open path)$$

~ this pattern repeats itself for many other components: resistors, inductors, reluctance (next sememster)

* ex: parallel plates

 $C = \frac{\varepsilon_{e} \Phi_{E}}{\varepsilon_{r}}$

 $= \frac{\varepsilon EA}{Ed} = \frac{\varepsilon A}{d}$

* work formulation

$$W = \frac{1}{2} QV = \frac{1}{2} CV^{2} = \int \frac{\varepsilon}{2} e^{2} d\tau$$

$$= \frac{\varepsilon}{2} flux \cdot flow$$

$$C = \frac{2W}{V^{2}} = \frac{\varepsilon}{V^{2}} \int E^{2} d\tau = \frac{\varepsilon}{2} \frac{flux \cdot flow}{flow \cdot flow}$$

* capacitance matrix

~ in a system of conductors, each is at a constant potential ~ the potential of each conductor is proportional to the individual charge on each of the conductors ~ proportionality expressed as a matrix coefficients of potetial P_{ij} or capacitance matrix C_{ij} $V_i = P_{ij} Q_j \qquad \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} = \begin{pmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{pmatrix} \begin{pmatrix} Q_1 \\ Q_2 \\ Q_3 \end{pmatrix}$

Section 3.1 - Laplace's Equation

* overview: we leared the math (Ch i) and the physics (Ch2) of electrostatics basically all of the concepts of Phy232, but in a new sophisticated language
 ~ Ch 3: Boundary Value Problems (BVP) with LaPlace's equation (NEW!)

 a) method of images
 b) separation of variables
 c) multipole expansion
 ~ Ch 4: Dielectric Materials: free and bound charge (more in-depth than 232)

 $\mathcal{X} \xrightarrow{d} (V, \overline{A}) \xrightarrow{d} (\overline{E}, \overline{B}) \xrightarrow{d} 0$ Equations of electrodyamics: EI[14 55 $\vec{\mathsf{F}}=q(\vec{\mathsf{E}}+\vec{\mathsf{v}}\times\vec{\mathsf{B}})$ Lorentz force (I) Brute force! $(\vec{D},\vec{H}) \rightarrow (\rho,J) \rightarrow 0$ $\nabla J + dp = 0$ $\vec{E} = \int \frac{dq'\hat{x}}{4\pi \xi' x^2}$ Continuity $\nabla \cdot \vec{D} = \rho \nabla x \vec{E} + \partial_t \vec{B} = \vec{O}$ Maxwell electric, (III) Elegant but cumbersome (II) Symmetry $\nabla \cdot \vec{B} = \vec{O} \quad \nabla x \vec{H} - \partial_t \vec{D} = \vec{J}$ magnetic fields $\Phi_{\rm E} = \mathcal{O}_{\rm E}$ $\nabla \cdot \vec{D} = \rho$ $\nabla \times \vec{E} = \vec{O}$ Ch.4 D=EE B=UF J=JE Constitution (IV) Refined brute Ē=-VV-QĀ B=VXĀ (V) the WORKHORSE !! Potentials $V = \int \frac{dq}{4\pi\epsilon_0 r}$ V→V+∂er À→Å+Vr $-\nabla^2 V = P_{e}$ Ch.3 Gauge transform

* Classical field equations - many equations, same solution:

 $\begin{aligned} & Laplace/Poisson: \nabla^2 V = 0 \quad e \forall V = \rho \quad \sim potentials (V, Å), dielectric e, permeability \mu \\ & Maxwell wave: \frac{1}{c^2} \frac{3}{b^2} (V, Å) - \nabla^2 (V, Å) = \mu(\rho, J) \quad \sim speed of light c, charge/current density (\rho, J) \\ & Heat equation: C \frac{\partial T}{\partial t} = K \nabla^2 T \quad \sim temp T, cond. K, heat q = -K \nabla u, heat cap. C \\ & Diffusion eq: \frac{\partial u}{\partial t} = D \nabla^2 u \quad \sim concentration u, diffusion D, flow D \nabla u \\ & Drumhead wave: \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} - \nabla^2 u = f \quad \sim displacement u, speed of sound C, force f \\ & Schrödinger: \frac{1}{2m} \nabla^2 \Psi + V \Psi = i h_{d} \Psi \quad \sim prob amp \Psi, mass m, potential V, Planck h \end{aligned}$

* I-dimensional Laplace equation $\nabla^2 \vee = \frac{\partial^2 \vee}{\partial x^2} = 0$ $\frac{dV}{dx} = \int 0 dx = a$ $\forall = \int a dx = ax + b$ $\sim a_j b$ satisfy boundary conditions $(V_0 \downarrow V_0')$ or $(V_0 \downarrow V_1)$ $\sim mean field: \quad \forall (x) = \frac{1}{2} (\forall (x - a) + \forall (x + a))$ $\sim no \ local \ maxima \ or \ minima \ (stretches \ tight)$ * 2-dimensional Laplace equation $\nabla^2 \vee = \frac{\partial^2 \vee}{\partial x^2} + \frac{\partial^2 \vee}{\partial y^2} = 0$

~ no straightorward solution (method of solution depends on the boundary conditions)

~ Partial Differential Equation (elliptic 2nd order) ~ Chicken & egg: can't solve $\frac{\partial^2 V}{\partial x^2}$ until you know $\frac{\partial^2 V}{\partial y^2}$ ~ solution of a rubber sheet ~ no local extrema -- mean field: $V(\vec{r}) = \frac{1}{2\pi R} \oint_{\text{circle}} V dl$ * 3-dimensional Laplace equation ~ generalization of 2-d case ~ same mean field theorem: $V(\vec{r}) = \frac{1}{4\pi R^2} \oint_{\text{Sphere}} V da$.

~ charge singularity between two regions: $V(r) = \frac{q}{4\pi\epsilon_0 r} = \frac{q}{\epsilon_0} G(\mathcal{E})$ $E(\mathcal{E}) = \frac{q\mathcal{E}}{4\pi\epsilon_0 r^2}$ $O(\mathcal{E}) = \frac{q\mathcal{E}}{4\pi\epsilon_0 r^2}$

Boundary Conditions

- * and order PDE's classified in analogy with conic sections: replacing \downarrow_{χ} with χ , etc a) Elliptic - "spacelike" boundary everywhere (one condition on each boundary point) eq. Laplace's eq, Poisson's eq.
 - b) Hyperbolic "timelike" (2 initial conditions) and "spacelike" parts of the boundary eg. Wave equation
 - c) Parabolic 1st order in time (1 initial condition) eq. Diffusion equation, Heat equation
- * Uniqueness of a BVP (boundary value problem) with Poisson's equation: if V_1 and V_2 are both solutions of $\nabla V = -(Y_{E_1})$ then let $U = V_1 - V_2$ $\nabla^2 U = O$ integration by parts: $\nabla \cdot (U \nabla U) = U \nabla \cdot \nabla U + \nabla U \cdot \nabla U = U \nabla^2 U + (\nabla U)^2$ in region of interest: $\int da \cdot (U \nabla U) = \int \nabla \cdot (U \nabla U) dt = \int U \nabla^2 U + (\nabla U)^2 dt$ note that: $\nabla^2 U = ()$ and $(\nabla U)^2 > ()$ always thus if $\int da \cdot U \nabla U = \int da \cdot U \frac{\partial U}{\partial n} = 0$ then $\int (\nabla U)^2 d\tau = 0 \implies U = 0$ everywhere a) Dirichlet boundary condition: (1=0) - specify potential $V_1 = V_2$ on boundary - specify flux $\frac{\partial V_i}{\partial n} = \frac{\partial V_i}{\partial n}$ on boundary b) Neuman bounary condition: $\frac{\partial U}{\partial n} = \bigcirc$

* Continuity boundary conditions - on the interface between two materials

Flux:

$$\vec{D} = \underline{e}\vec{E}$$

 $(shorthand
for now)
 $\vec{\Phi} = \oint_{V} \vec{D} \cdot d\vec{a} = \int_{V} \vec{\sigma} \, da = Q$
 $\vec{h} \cdot (\vec{D}_{2} - \vec{D}_{1}) A = \sigma \cdot A$
 $\vec{h} \cdot (\vec{D}_{2} - \vec{D}_{1}) = \sigma$
 $-\frac{\partial V_{2}}{\partial n_{1}} + \frac{\partial V_{1}}{\partial n_{1}} = \sigma / E_{0}$
Flow:
Flo$

* the same results obtained by integrating field equations across the normal

~ opposite boundary conditions for magnetic fields:

$$\nabla \cdot \vec{D} = P_{\mathcal{E}_{s}} \qquad \nabla x \vec{E} = \vec{k}_{e} S(n) \qquad \nabla x \vec{E} = \left| \begin{array}{c} \hat{s} \in \hat{n} \\ \hat{s} \in \hat{s} \\ \hat{s}$$