Survey of Electromagnetism

* Realms of Mechanics

~E\&M was second step in unification
~ the stimulus for special relativity
\sim the foundation of QED \rightarrow standard model
* Electric charge (duFay, Franklin)
$\sim+$,- equal \& opposite ($Q C D: 1+g+b=0$)
$\sim e=1.6 \times 10^{-19} \mathrm{C}$, quantized $\left(g_{n}\left\langle 2 \times 10^{-21} e\right)\right.$
~ locally conserved (continuity)
* Electric Force (Coulomb, Cavendish)

* Electric Field (Faraday)
~ action at a distance vs. locality field "mediates" or carries force extends to quantum field theories
\sim field is everywhere always $\overrightarrow{E C}(x, t)$ differentiable, integrable
field lines, equipotentials
~ powerful techniques for solving complex problems
* Field lines / Flux
$\sim E$ is tangent to the field lines
Flux = \# of field lines
\sim density of the lines = field strength
D is called "electric flux density"
\sim note: $\frac{A}{r^{2}}=\Omega$ independent of distance $\Phi_{D}=\int D \cdot d \vec{a}$

$$
\begin{equation*}
\vec{D}=\varepsilon \vec{E}=\Phi_{D} / A \tag{t}
\end{equation*}
$$

electric flux flows from
all flux lines begin at + and end at - charge

* Unification of Forces

* Electric potential

divergent field lines $D K$ from source Q
* Equipotential surfaces / Flow ~ no work done to field lines Equipotential = surfaces of const energy
~ work is done along field line Flow $=$ \# of potential surfaces crossed

$$
\varepsilon_{E} \equiv \int \stackrel{\rightharpoonup}{E} \cdot d \vec{l}
$$

$$
V=-\varepsilon_{E}
$$

~ potential if flow

$$
E=-\nabla V
$$

is independent of path
~ circulation or EMF in a closed loop

* Magnetic field
~ no magnetic charge (monopole)
~ field lines must form loops
~ permanent magnetic dipoles first discovered
torque: $\vec{\tau}=\vec{\mu} \times \vec{B}$
energy: $\quad U=-\vec{\mu} \cdot \vec{B}$
force: $\vec{F}=\nabla(\vec{\mu} \cdot \vec{B})$

~ electric current shown to generate fields (Oersted, Ampere)
~ magnetic dipoles are current loops
~Biot-Sarart law - analog of Coulomb law

$$
\stackrel{\rightharpoonup}{F}=\int I^{\prime} d \vec{l} \times \frac{\mu_{0}}{\frac{4 \pi}{4 \pi} \frac{I d l \times \hat{r}}{r^{2}}}
$$

$\begin{array}{ll}\sim B=\text { flux density } \\ \sim H & =\text { field intensity }\end{array} \quad \vec{B}=\mu \vec{H}=\Phi_{B} / A$

* Faraday law
~ opposite of Orsted's discovery:
changing magnetic flux induces potential (EMF)
\sim electric generators, transformers $\quad \varepsilon_{E}=-\frac{\partial \Phi_{B}}{\partial t}$

* Maxwell equations
~ added displacement current - D lines have +1 - charge at each end
\sim changing diplacement current equivalent to moving charge
~ derived conservation of charge and restored symmetry in equations
~ predicted electromagnetic radiation at the speed of light $C=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$

$$
\begin{aligned}
& +\xrightarrow{\Phi_{D}}- \\
& I_{d}=\frac{\partial \Phi_{D}}{\partial t}
\end{aligned}
$$

Maxwell equations

$$
\begin{array}{ll}
\nabla \cdot \vec{D}=\rho & \nabla \times \vec{E}+\partial_{t} \vec{B}=\vec{O} \\
\nabla \cdot \vec{B}=0 & \nabla \times \vec{H}-\partial_{t} \vec{D}=\vec{J}
\end{array}
$$

Constitutive equations

$$
\vec{D}=\varepsilon \vec{E} \quad \vec{B}=\mu \vec{H} \quad \vec{J}=\sigma \vec{E}
$$

Lorentz force

$$
\vec{F}=q(\vec{E}+\vec{V} \times \vec{B})=\int(\rho \vec{E}+\vec{J} \times \vec{B})
$$

Continuity

$$
\nabla \cdot \vec{J}+\partial_{\rho}=0
$$

Potentials

$$
\vec{E}=-\nabla \mathbb{N}-a_{c} \vec{A} \quad \vec{B}=\nabla \times \vec{A}
$$

Gauge transformation

$$
V \rightarrow V-\partial_{t} \lambda \quad \vec{A} \rightarrow \vec{A}+\nabla \lambda
$$

$$
\begin{array}{ll}
\Phi_{D}=Q_{\text {encl }} & \Phi_{B}=0 \\
\varepsilon_{E}=-\frac{\partial \Phi_{B}}{\partial t} & \varepsilon_{H}=I_{\text {encl }}+\frac{\partial \Phi_{D}}{\partial t}
\end{array}
$$

(2)

$$
\begin{equation*}
0 \rightarrow \lambda \xrightarrow{d}(V, \vec{A}) \xrightarrow{d}(\stackrel{\rightharpoonup}{E}, \vec{B}) \xrightarrow{d} 0 \tag{3}
\end{equation*}
$$

$$
\varepsilon \sqrt{ } \mid \mu>\sigma
$$

$$
(, u) \xrightarrow{d}(\stackrel{\rightharpoonup}{D}, \vec{H}) \xrightarrow{d}(\rho, \vec{J}) \xrightarrow{d} 0
$$

* Linear spaces
\sim linear combination: $(\alpha \vec{u}+\beta \vec{v})$ is the basic operation
~ basis: $(\hat{x}, \hat{y}, \hat{z}$ or $\vec{a}, \vec{b}, \vec{c})$ \# basis elements = dimension independence: not collapsed into lower dimension closure: vectors span the entire space
~ components: $\vec{x}=\vec{a} \alpha+\vec{b} \beta+\vec{c} \gamma=(\vec{a} \vec{b} \vec{c})\left(\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right)$

$$
\text { in matrix form: } \quad \vec{X}=\overrightarrow{\mathbb{B}} X
$$

$$
\begin{aligned}
& \text { in matrix form. } \quad \vec{X}=\vec{W} X \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
a_{x} & b_{x} & c_{x} \\
a_{y} & b_{y} & c_{y} \\
a_{z} & b_{z} & c_{z}
\end{array}\right)\left(\begin{array}{c}
\alpha \\
\beta \\
\gamma
\end{array}\right) \quad \begin{array}{l}
\text { where } \\
\vec{a}=\hat{x} a_{x}+\hat{y} a_{y}+\hat{z} a_{z}=(\hat{x} \hat{y} \hat{z})\left(\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right)
\end{array}
\end{aligned}
$$

Exterior Products - higher-dimensional objects

* cross product (area)

$$
\begin{aligned}
& \vec{C}=\vec{a} \times \vec{b}=\hat{n} a b \sin \theta=\hat{r} a_{1} b=\hat{n} a b_{\perp}=\left|\begin{array}{lll}
\hat{x} & \hat{y} & \hat{z} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right| \\
& \text { where } \hat{h} \perp \vec{a} \text { and } \hat{h} \perp \vec{b} \quad \text { (RH-rule) }
\end{aligned}
$$

~ properties: 1) vector-valued
2) bilinear $\quad a \times(b+c)=a \times b+a \times c(a+b) \times c=a \times c+b \times c$
3) antisymmetric $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$

$\vec{a} \times \vec{b}=\vec{a} \times \vec{b}^{\prime}$
$\vec{a} \times(\vec{b}-\vec{b})=\overrightarrow{0}$ (parallel)
\sim components: $\hat{e}_{i} \times \hat{e}_{j}=\varepsilon_{i j} k \hat{e}_{k}$

$$
\varepsilon_{i j k}= \begin{cases}1 & \text { ike even permutation } \\ -1 & \text { it odd permutation } \\ 0 & \text { repeated index }\end{cases}
$$

Levi-Civita tensor - completely antisymmetric:

$$
\vec{x} \times \vec{y}=x^{i} \vec{b}_{i} \times \vec{b}_{j} y^{j}=\varepsilon_{i j}{ }^{k} x^{i} y^{j} \hat{e}_{k}
$$

~ orthogonal projection: $\hat{h} x$ projects 1 to \hat{h} and rotates by 90°

$$
\hat{X}_{\perp}=-\hat{n} \times(\hat{n} \times \hat{x})=P_{\perp} \vec{x} \quad P_{\perp}=-\hat{n} \times \hat{n} \times \quad P_{1!}+P_{\perp}=\hat{n} \hat{n} 0-\hat{n} \times \hat{n} \times=I
$$

\sim where is the metric in x ?
vector x vector $=$ pseudovector
symmetries act more like a 'bivector'
can be defined without metric

* triple product (volume of parallelpiped) - base times height $\quad d=\vec{a} \cdot \vec{b} \times \vec{c}=\left|\begin{array}{l}a_{x} a_{y} a_{z} \\ b_{x} b_{y} b_{z} \\ \\ \text { ~ completely antisymmetric - definition of determinant } \\ c_{x} c_{y} c_{z}\end{array}\right|$
\sim vector vector x vector $=$ pseudoscalar (transformation properties)
~ acts more like a 'trivector' (volume element)
~ again, where is the metric? (not needed!)
* exterior algebra (Grassman, Hamilton, Clifford)
~ extended vector space with basis elements from objects of each dimension
~ pseudo-vectors, scalar separated from normal vectors, scalar

magnitude, length,	area,	volume
scalar, vectors, bivectors, trivector		

~ what about higher-dimensional spaces (like space-time)?
cant form a vector 'cross-product' like in 3-d, but still have exterior product
~ all other products can be broken down into these 8 elements
most important example: $B A C-C A B$ rule (HWy: relation to projectors)

$$
\begin{aligned}
A \times(B \times C) & =B(A \cdot C)-C(A \cdot B) \\
\varepsilon_{j k}^{i} A^{j}\left(\varepsilon_{m n}^{k} B^{m} C^{n}\right) & =\left(\delta_{m}^{i} \delta_{j n}-\delta_{n}^{i} \delta_{j m}\right) A^{j} B^{m} C^{n}=B^{i}\left(A^{j} C_{j}\right)-C^{i}\left(A^{j} B_{j}\right)
\end{aligned}
$$

Section 1.1.5 - Linear Operators

* Linear Transformation
~ function which preserves linear combinations
\sim determined by action on basis vectors (egg-crate)
\sim rows of matrix are the image of basis vectors
\sim determinant $=$ expansion volume (triple product)
\sim multilinear (2 sets of bases) - a tensor
* Change of coordinates
~ two ways of thinking about transformations both yield the same transformed components
~ active: basis fixed, physically rotate vector
~ passive: vector fixed, physically rotate basis
* Transformation matrix (active) - basis vs. components

$$
\begin{aligned}
& (\vec{a} \vec{b} \vec{c})=(\hat{x} \hat{y} \hat{z})\left(\begin{array}{lll}
a_{x} & b_{x} & c_{x} \\
a_{y} & b_{y} & c_{y} \\
a_{z} & b_{z} & c_{z}
\end{array}\right) \\
& \vec{x}=(\vec{a} b \vec{c})\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=(\hat{x} \hat{y} \hat{z})\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
a_{x} & b_{x} & c_{x} \\
a_{y} & b_{y} & c_{y} \\
a_{z} & b_{z} & c_{z}
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right) \\
& \vec{e}^{\prime}=\vec{e} R \\
& \vec{X}=\widetilde{\mathbb{E}}^{\prime} \mathbb{X}^{\prime}=\widetilde{\widetilde{\mathbb{E}}} \underbrace{\widetilde{R} \mathbb{X}^{\prime}}=\overrightarrow{\mathbb{e}} \underbrace{\mathbb{X}}=\vec{x} \\
& \stackrel{W}{6}^{\prime}=\stackrel{\text { ® }}{ } \text { R } \\
& X^{\prime}=R^{-1} \mathbb{X}
\end{aligned}
$$

active
transformation

* Orthogonal transformations
$\sim R$ is orthogonal if it 'preserves the metric' (has the same form before and after)

$$
\begin{aligned}
& \vec{e}^{\top} \cdot \vec{e}=\binom{\hat{x}}{\hat{y}} \cdot(\hat{x} \hat{y})=\left(\begin{array}{ll}
\hat{x} \cdot \hat{x} & \hat{x} \cdot \hat{y} \\
\hat{y} \cdot \hat{x} & \hat{y} \cdot \hat{y}
\end{array}\right)=\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)=g \quad \vec{e}^{\prime \top} \cdot \vec{e}^{\prime}=\binom{\vec{a}}{\vec{b}} \cdot\left(\begin{array}{ll}
\vec{a} \vec{b})
\end{array}=\left(\begin{array}{ll}
\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\
\vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b}
\end{array}\right)=g^{\prime}\right. \\
& \vec{e}^{\prime}=\vec{e} R \quad \vec{e}^{\top} \cdot \vec{e}^{\prime}=\vec{R}^{\top} \vec{e}^{\top} \cdot \vec{e} R=R^{\top} g R=g^{\prime} \quad g=g^{\prime} \quad R^{\top} g R=g \\
& \sim \text { equivlent definition in terms of components: }
\end{aligned}
$$

~ starting with an orthonormal basis: $\quad g=I \quad g_{i j}=\delta_{i j} \quad R^{\top} R=I \quad R^{-1}=R^{\top}$

* Symmetric / antisymmetric vs. Symmetric / orthogonal decomposition
~ recall complex numbers $\quad u=\rho+i \phi \quad \rho^{*}=\rho \quad(i \phi)^{*}=-i \phi$

$$
e^{u}=e^{\rho+i \phi}=r e^{i \phi} \quad\left|e^{i \phi}\right|^{2}=e^{-i \phi} e^{i \phi}=e^{i 0}=1
$$

~ similar behaviour of symmetric / antisymmetric matrices

$$
\begin{aligned}
& M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & (b+c) / 2 \\
(b+c) / 2 & d
\end{array}\right)+\left(\begin{array}{cc}
0 & (b-c) / 2 \\
(c-b) / 2 & 0^{2}
\end{array}\right)=T+A \quad \begin{array}{l}
\text { A antisymmet } \\
e^{M}=1+M+\frac{1}{2!} M^{2}+\frac{1}{3!} M^{3}+\ldots \quad=e^{T+A} \neq e^{T} e^{A} \quad R=e^{A} \quad R^{T} R=\left(e^{A}\right)^{T} e^{A}=e^{A^{\top}+A}=e^{0}=I \\
S=e^{T}=e^{V W V^{-1}}=V e^{W} V^{-1} \quad \text { symmetric } \\
R \text { orthogonal } \\
\left.\operatorname{det}\binom{e^{\lambda_{1}}}{e^{\lambda_{2}}}=e^{\lambda_{1}} \cdot e^{\lambda_{2}} \ldots=e^{\lambda_{1}+\lambda_{2}+\ldots}=e^{\operatorname{tr}\left(\lambda_{r} \lambda_{2}\right.}\right) \quad \operatorname{det} e^{A}=e^{\operatorname{tr} A}=e^{0}=1
\end{array} l
\end{aligned}
$$

Eigenparaphernalia

* illustration of symmetric matrix 5 with eigenvectors v, eigenvalues λ

$$
\begin{aligned}
& S v=\lambda V \\
& \left(\begin{array}{ll}
2 & 1 \\
12
\end{array}\right)\binom{v_{1}}{v_{2}}=\lambda\binom{v_{1}}{v_{2}} \\
& \binom{21}{12}\binom{1}{0}=\binom{2}{1} \\
& \binom{21}{12}\binom{0}{1}=\binom{1}{2} \\
& \binom{21}{12}\binom{1}{1}=\binom{3}{3}=3\binom{1}{1} \\
& \binom{21}{12}\binom{1}{-1}=\binom{3}{3}=1\binom{1}{-1}
\end{aligned}
$$

* similarity transform - change of basis (to diagonalize A)

$$
S\left(v_{1} v_{2} \ldots\right)=\left(\vec{v}_{1} \vec{v}_{2} \ldots\right)\left(\pi_{1} \lambda_{2}\right) \quad S V=V W V^{-1}=V W V^{\top}
$$

* a symmetric matrix has real eigenvalues

$$
\begin{aligned}
S v & =\lambda v & v^{*} S v & =\lambda v^{* T} v \\
v^{*} T S & =v^{*} \lambda^{*} & v^{* T} S v & =\lambda^{*} v^{* T} v
\end{aligned} \quad \lambda=\lambda^{*}
$$

~ what about a antisymmetric/ orthogonal matrix?

* eigenvectors of a symmetric matrix with distinct eigenvalues are orthogonal

$$
\begin{aligned}
& V^{\top} S=\left(S^{\top} V\right)^{\top}=(S V)^{\top}=(\lambda V)^{\top}=V^{\top} \lambda \\
& \lambda_{1} V_{1} \cdot V_{2}=\left(V_{1}^{\top} S\right) V_{2}=V_{1}^{\top}\left(S V_{2}\right)=V_{1} \cdot V_{2} \lambda \\
& V_{1} \cdot V_{2}\left(\lambda_{1}-\lambda_{2}\right)=0 \quad \text { if } \lambda_{1} \neq \lambda_{2} \text { then } V_{1} \cdot V_{2}=0
\end{aligned}
$$

* singular value decomposition (SVD)
~ transformation from one orthogonal basis to another

$$
M=R S=\underbrace{R V} W V^{\top}=U W V^{\top}
$$

~ extremely useful in numerical routines
M arbitrary matrix
R orthogonal S symmetric W diagonal matrix V orthogonal (domain) U orthogonal (range)

* differential operator
\sim ex. $u=x^{2} \quad d u=d x^{2}=2 x d x \quad d \equiv \lim _{\Delta \rightarrow 0} \Delta \approx 0$ or $d\left(\sin x^{2}\right)=\cos \left(x^{2}\right) d x^{2}=\cos x^{2} \cdot 2 x \cdot d x$
$\sim d f$ and $d x$ connected - refer to the same two endpoints

* scalar and vector fields - functions of position (\vec{r})
~ "field of corn" has a corn stalk at each point in the field
\sim scalar fields represented by level curves (ad) or surfaces (ad)
~ vector fields represented by arrows, field lines, or equipotentials
* partial derivative \& chain rule
~ signifies one varying variable AND other fixed variables
\sim notation determined by denominator; numerator along for the ride
\sim total variation split into sum of variations in each direction
$\frac{\partial u}{\partial x}\left(\frac{\partial u}{\partial x}\right)_{y, z} \partial_{x} u u_{, x} \quad \frac{\cdots}{\cdots}=\frac{d x}{\cdots} \frac{\cdots}{\partial x}+\frac{d y}{\cdots} \frac{\cdots}{\partial y}+\frac{d z}{\cdots} \frac{\cdots}{\partial z}$
* vector differential - gradient
~ differential operator, del operator

$$
\begin{aligned}
d T & =\frac{\partial T}{\partial x} d x+\frac{\partial T}{\partial y} d y+\frac{\partial T}{\partial z} d z \\
& =\underbrace{\left(\partial_{x}, \partial_{y}, \partial_{z}\right)}_{\nabla} T \cdot \underbrace{(d x, d y, d z)}_{\overrightarrow{d l}}
\end{aligned}
$$ or inifinite sum $=$ integral (Fundamental Thereon of calculus)

$$
\frac{d f}{d x}=\frac{d f}{d u} \frac{d u}{d x} \quad \int_{a}^{b} \frac{d f}{d x} d x=\int_{a}^{b} d f=\left.f\right|_{a} ^{b}
$$

\sim made finite by taking ratios (derivative or chain rule)

Higher Dimensional Derivatives

* curl - circular flow of a vector field

$$
\nabla \times \vec{V}=\left|\begin{array}{lll}
\hat{x} & \hat{y} & \hat{z} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
V_{x} & V_{y} & V_{z}
\end{array}\right|=\begin{array}{r}
\hat{x}\left(V_{z, y}-V_{y, z}\right) \\
+\hat{y}\left(V_{x, z}-V_{z, x}\right) \\
+\hat{z}\left(V_{y, x}-V_{x, y}\right)
\end{array}
$$

* divergence - radial flow of a vector field

$$
\nabla \cdot \vec{V}=\left(\partial_{x} \partial_{y} \partial_{z}\right)\left(\begin{array}{l}
V_{x} \\
V_{y} \\
V_{z}
\end{array}\right)=V_{x, x}+V_{y, y}+V_{z, z}
$$

* product rules
~ how many are there?
~ examples of proofs

$$
\begin{aligned}
& \vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b}) \\
& \vec{A} \times(\nabla \times \vec{B})=\sqrt{\nabla}(\vec{A} \cdot \vec{B})-\frac{\sqrt{B}}{\vec{B}}(\vec{A} \cdot \vec{\nabla}) \\
& \nabla \times(\vec{A} \times B)=\frac{\sqrt{A}}{\vec{A}}(\nabla \cdot \vec{B})-\vec{B}(\nabla \cdot \vec{A})
\end{aligned}
$$

$$
\begin{aligned}
& \nabla(f g)=\nabla f \cdot g+f \cdot \nabla g \\
& \nabla(\vec{A} \cdot \vec{B})=\vec{A} \times(\nabla \times \vec{B})+(\vec{A} \cdot \nabla) \vec{B}+(\vec{B} \leftrightarrow \vec{A}) \\
& \nabla \times(f \vec{A})=\nabla f \times \vec{A}+f(\nabla \times \vec{A}) \\
& \nabla \times(\vec{A} \times \vec{B})=(B \cdot \nabla) A-B(\nabla \cdot A)-(\vec{B} \leftrightarrow \vec{A}) \\
& \nabla \cdot(f \vec{A})=\nabla f \cdot \vec{A}+f \nabla \cdot \vec{A} \\
& \nabla \cdot(\vec{A} \times \vec{B})=(\nabla \times \vec{A}) \cdot \vec{B}-\vec{A} \cdot(\nabla \times \vec{B})
\end{aligned}
$$

* second derivatives - there is really only ONE! (the Laplacian) $\nabla^{2} \equiv \nabla \cdot \nabla \equiv \partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}$ 1)

$$
\begin{aligned}
& \nabla \cdot(\nabla T)=\nabla^{2} T \\
& (\nabla \cdot \nabla) \vec{v}=\nabla^{2} \vec{v} \\
& \text { 5) } \begin{aligned}
\nabla^{2} & =\nabla_{11}^{2}+\nabla_{1}^{2} \\
& =\nabla(\mathbb{\nabla} \cdot-\nabla \times \nabla \times
\end{aligned},-\nabla \times{ }^{(\nabla)}
\end{aligned}
$$

~ eg: $\nabla^{2} T=0$ no net curvature - stretched elastic band \sim defined component-wise on v_{x}, v_{y}, v_{z} (only cartesian coords)
3), 5)
~ longitudinal I transverse projections

$$
\begin{aligned}
\nabla(\mathbb{\nabla} \cdot \vec{v}) & \equiv \nabla_{11}^{2} \vec{v} \\
-\nabla \times \nabla \times \vec{v} & \equiv-\nabla_{1}^{2} \vec{v}
\end{aligned}
$$

* unified approach to all higher-order derivatives with differential operator

1) $d^{2}=0$
2) $d x^{2}=0$
3) $d x d y=-d y d x$

+ differential (line, area, volume) elements
~ Gradient

$$
d f=f_{, x} d x+f_{1 y} d y+f_{, z} d z=\nabla f \cdot d \vec{l} \quad d \vec{l}=(d x, d y, d z)=d \vec{r}
$$

~ Curl

$$
\begin{aligned}
& d(\vec{A} \cdot d l)=d\left(A_{x} d x+A_{y} d y+A_{z} d z\right) \\
& =A_{x, x} d y d x+A_{x, y} d y d x+A_{x, z} d z d x \\
& +A_{y, x} d x d y+A_{y, y} d y d y+A_{y, z} d z d y \\
& \left.+A_{z, x} d x d z+A_{z, y} d y d z+A_{z, z} d z\right) d z \\
& =\left(A_{z, y}-A_{y, z}\right) d y d z+\left(A_{x, z}-A_{z, x}\right) d z d x+\left(A_{y, x}-A_{x, y}\right) d x d y \\
& d(\vec{A} \cdot d l)=(\nabla x \vec{A}) \cdot d \vec{a} \\
& \quad d \vec{a}=(d y d z, d z d x, d x d y)=\frac{1}{2} \overrightarrow{d l} \times d \vec{l}=d^{2} \vec{r}
\end{aligned}
$$

~ Divergence

$$
\nabla f=\frac{d f}{d \vec{l}}=\frac{d f}{d \vec{r}}
$$

$$
\nabla \times \vec{A}=\frac{d(\vec{A} \cdot d \vec{l})}{d \vec{a}}=\frac{d(d \vec{r} \cdot \vec{A})}{d^{2} \vec{r}}
$$

$$
\begin{aligned}
& d(\vec{B} \cdot \overrightarrow{d a})=d\left(B_{x} d y d z+B_{y} d z d x+B_{z} d x d y\right) \\
& \quad=B_{x, x} d x d y d z+B_{x, y} d y d y d z+B_{x, z} d z d y d z \\
& \quad+B_{y, x} d x d z d x+B_{y, y} d y d z d x+B_{y, z} d z d z d x \\
& \quad+B_{z, x} d x d x d y+B_{z, y} d y d x d y+B_{z, z} d z d x d y \\
& =\left(B_{x, x}+B_{y, y}+B_{z, z}\right) d x d y d z \\
& \frac{d(\vec{B} \cdot \overrightarrow{d a})=}{\nabla} \cdot B \cdot d \tau \quad d \tau=\frac{1}{6} d l \cdot d \vec{l} \times d \vec{l}=d^{3} \vec{r} \\
& \frac{d(d \vec{r} \cdot \vec{A})}{d^{2} \vec{r}} \quad \nabla \cdot \vec{B}=\frac{d(\vec{B} \cdot d \vec{a})}{d \tau}=\frac{d\left(d^{2} \vec{r} \cdot \vec{B}\right)}{d^{3} \vec{r}}
\end{aligned}
$$

Section 1.4 - Affine Spaces

* Affine Space - linear space of points
POINTS VS VECTORS
~ operations

$$
\begin{aligned}
& Q-P=\vec{V} \\
& P+\vec{V}=Q
\end{aligned}
$$

$$
\vec{W}=\alpha \vec{u}+\beta \vec{v}
$$

~ points are invariant under translation of the origin
~ can treat points as vectors from the origin to the point cumbersome picture: many meaninglyess arrows from meaningless origin position field point $\vec{r}=(x, y, z)$ displacement vector: $\vec{r} \equiv \vec{r}-\vec{r}^{\prime}$ vector: source pt $\vec{r}^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ differential:
~ the only operation on points is the weighted average weight $\omega=0$ for vectors and $\omega=1$ for points
~ transformation: affine
linear

$$
\left(\begin{array}{ll}
R & \vec{e} \\
000 & 1
\end{array}\right)\binom{\vec{r}}{1}=\binom{R \vec{r}+\vec{e}}{1}
$$

~ decomposition: coordinates vs components

- they appear the same for cartesian systems!

$$
\left(\begin{array}{cc}
R & \vec{E} \\
000 & 1
\end{array}\right)\binom{\vec{V}}{0}=\binom{R \vec{V}}{0}
$$

- coordinates are scalar fields $q^{i}(\vec{r})$
* Rectangular, Cylindrical and Spherical coordinate transformations
~ math: 2-d $\rightarrow N$-d physics: 3d + azimuthal symmetry
\sim singularities on z-axis () and origin
rect. cyl. sph.

$$
\begin{aligned}
& x=S \cdot \cos \phi=r \cdot \sin \theta \cdot \cos \phi \\
& y=S \cdot \sin \phi=r \cdot \sin \theta \cdot \sin \phi \\
& z=z
\end{aligned} \quad(\hat{r} \hat{\theta} \hat{\phi})=(\hat{s} \phi \hat{z}) \overbrace{\left(\begin{array}{lll}
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1 \\
\cos \theta-\sin \theta & 0
\end{array}\right)}^{R_{\hat{p}}(\theta)}=(\hat{x} \hat{y} \hat{z}) R_{\hat{z}}(\phi) \cdot R_{\phi}(\theta)
$$

$$
(\hat{S}, \hat{\phi}, \hat{z})=(\hat{x}, \hat{y}, \hat{z}) \overbrace{\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)}^{R_{\hat{1}}(\phi)}
$$

$$
\begin{aligned}
& d \vec{l}_{\text {eec }}=\hat{x} d x+\hat{y} d y+\hat{z} d z \\
& d \vec{l}_{l y e}=\hat{s} d s+\hat{\phi} s d \phi+z d z \\
& d l_{\text {eph }}=\hat{r} \underbrace{d r}_{d l_{r}}+\hat{\theta} \underbrace{r d \theta}_{d \theta}+\hat{\phi} \underbrace{r \sin \theta d \phi}_{d \phi}
\end{aligned}
$$

$$
\begin{aligned}
& d \vec{a}_{r e c}=\hat{x} d y d z+\hat{y} d z d x+\hat{z} d x d y \\
& d \vec{a}_{y p}=\hat{s} s d \phi d z+\hat{\phi} d z d s+\hat{z} d s s d \phi \\
& d \overrightarrow{\mathrm{~s}}_{\text {eph }}=\hat{r} r d \theta r \sin \theta d \phi+\hat{\theta} r \sin \theta d \phi d r+\hat{\phi} d r r d \theta
\end{aligned}
$$

Curvilinear Coordinates

* coordinate surfaces and lines
~ each coordinate is a scalar field $g(\vec{r})$
~ coordinate surfaces: constant 8
\sim coordinate lines: constant $8^{j}, 8^{i}$
* coordinate basis vectors
$q^{\bullet} \sim\{u, v, \omega\}$
~ generalized coordinates
$\overrightarrow{b_{i}}=\left(\frac{\partial \vec{r}}{\partial q^{i}}\right)_{\phi, q k}\{\{\hat{u} f, \hat{v} g, \hat{\omega}\}$
\sim contravariant basis
$\vec{b}^{i}=\nabla q^{i} \sim\left\{\hat{y}_{\rho}, \hat{y}_{g}, \hat{\omega} / \mathrm{h}\right\} \quad \sim$ covariant basis
$h_{i}=\left|\vec{b}_{i}\right| \sim\{f, g, h\} \quad \sim$ scale factor
$\hat{e}_{i}=\vec{b}_{i} / h_{i} \sim\{\hat{u}, \hat{v}, \hat{w}\} \quad \sim$ unit vector
$g_{i j}=\vec{b}_{i} \cdot \vec{b}_{j} \sim\left(\begin{array}{ccc}h_{1} & 0 & c^{2} \\ 0 & h_{2} & 0 \\ 0 & 0 & h_{3}^{2}\end{array}\right)$
~ metric (dot product)

$\vec{r}_{i j}=\frac{\partial \vec{b}_{j}}{\partial q^{i}}=\vec{b}_{k} r_{i j}^{k}$
~ Christoffel symbols - derivative of basis vectors
differential elements
$d \vec{l}=\frac{\partial \vec{r}}{\partial q^{1}} d q^{1}+\frac{\partial \vec{r}}{\partial q^{2}} d q^{2}+\frac{\partial \vec{r}}{\partial q^{3}} d q^{3}=\vec{b}_{i} d q^{i}$
$=\hat{e}_{1} \underbrace{h_{1} d q^{\prime}}_{d l_{1}}+\hat{e}_{2} \underbrace{h_{2} d q^{2}}_{d l_{2}}+\hat{e}_{3} \underbrace{h_{3} d q^{3}}_{d l_{3}}$

$=\hat{e}_{1} \cdot h_{2} d q^{2} \cdot h_{3} d q_{q}^{3}+\hat{e}_{2} \cdot h_{3} d q^{3} \cdot h_{1} d q^{\prime}+\hat{e}_{3} \cdot h_{1} d q^{\prime} \cdot h_{2} d q^{2}$
$d \tau=\frac{1}{2} d \vec{l} \times d \vec{a}=\frac{1}{2} d \vec{l} \cdot d \vec{l} \times d \vec{l}=h_{1} d q \cdot h_{2} d q^{2} \cdot h_{3} d q^{3}$

$$
\begin{array}{rll}
\text { * example } & x=s & d x=c_{\phi} d s-s s_{\phi} d \phi \\
\left(c_{\phi}=\cos \phi\right) & y=s s_{\phi} & d y=s_{\phi} d s+s c_{\phi} d \phi
\end{array}
$$

$d \vec{l}=\hat{x} d x+\hat{y} d y=\left(\hat{x} c_{\phi}+\hat{y} s_{\phi}\right) d s+\left(\hat{x} s_{\phi}-\hat{y} c_{\phi}\right) s d \phi$

$$
=\hat{s} d s+\hat{\phi} s d \phi \quad(\hat{s} \hat{\phi})=(\hat{x} \hat{y})\left(\begin{array}{cc}
c_{\phi} & -s_{\phi} \\
s_{\phi} & c_{\phi}
\end{array}\right)
$$

$$
s^{2}=x^{2}+y^{2} \quad 2 s d s=2 x d x+2 y d y
$$

$$
y=x \tan \phi \quad d y=d x \tan \phi+x \sec ^{2} \phi d \phi
$$

$$
d \phi=\frac{-y}{s^{2}} d x+\frac{x}{s^{2}} d y
$$

$$
\nabla s=\frac{x}{s} \hat{x}+\frac{y}{s} \hat{y}=c_{\phi} \hat{x}+s_{\phi} \hat{y}=\hat{s}
$$

$$
\nabla \phi=\frac{-y}{s^{2}} \hat{x}+\frac{x}{s^{2}} \hat{y}=\frac{-s_{\phi} \hat{x}+c_{\phi} \hat{y}}{s}=\frac{\phi \phi}{s}
$$

* formulas for vector derivatives in curvilinear coordinates

$$
d f=\frac{\partial f}{\partial q^{i}} d q^{i}=\frac{\partial f}{n_{i} \partial q^{i}} \cdot h_{i} d q^{i}=\nabla f \cdot d \vec{l}
$$

$$
\nabla f=\frac{d f}{d \vec{r}}=\frac{\hat{e}_{i}}{h_{i}} \frac{\partial}{\partial_{q}} f
$$

$$
d(\overrightarrow{A \cdot} \cdot d l)=d\left(A_{k} h_{k} d q^{k}\right)=\frac{\partial}{\partial q^{j}}\left(h_{k} A_{k}\right) d q^{j} d q^{k}
$$

$$
=\varepsilon_{i_{j} k} \frac{\partial\left(h_{k} A_{k}\right)}{h_{j} h_{k} \partial q^{k}} d \vec{a}_{i}=(\nabla \times \vec{A}) \cdot d \vec{a}
$$

$$
\nabla \times \vec{A}=\frac{d\left(\overrightarrow{A_{2}} \cdot d l\right)}{d^{2} \vec{r}}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}
h_{1}{ }_{1} & h_{2} \hat{e}_{2} & h_{3} \hat{e}_{3} \\
d \partial_{2} & \partial / \partial a^{2} & \partial / \partial d_{3}^{3} \\
h_{1} A^{1} & h_{2} A^{2} & h_{3} A^{3}
\end{array}\right|
$$

$$
d(\vec{B} \cdot d \vec{a})=d\left(B_{i} h_{j} d q^{j} h_{k} d q^{k}\right)=\frac{\partial}{\partial q^{i}}\left(h_{j} h_{k} B_{i}\right) d q^{i} d q^{j} d q^{k}
$$

$$
=\frac{1}{h_{1} h_{2} h_{3}} \frac{\partial}{\partial q} \frac{\partial\left(h_{j} h_{k} B_{i}\right)}{\partial q^{i}} d \tau=\nabla \cdot \vec{B} d \tau
$$

this formula does not work for $\nabla^{2} \vec{B}$

$$
\text { instead, use: } \nabla^{2}=\nabla \nabla \cdot-\nabla \times \nabla \times
$$

$$
\nabla \cdot \vec{B}=\frac{d\left(\vec{B} \cdot d^{2} \vec{r}\right)}{d^{3} \vec{r}}=\frac{1}{h_{1} h_{2} h_{3}} \sum_{i} \frac{\partial}{\partial g_{i} j, k}\left(h_{j} h_{k} h_{i} B_{i}\right)
$$

$$
\nabla^{2} f=\frac{1}{h_{1} h_{2} h_{3}} \sum_{i} \frac{\partial}{\partial q_{i}} \frac{h_{j} h_{k}}{h_{i}} \frac{\partial}{\partial q_{i}} f
$$

different types of integration in vector calculus
1-dim: $\omega^{(1)}=\lambda d l, \varphi d \overrightarrow{l l}, \vec{A} d l, \vec{A} \cdot d l, \vec{A} \times d \overrightarrow{l l} \quad$ Flow: $\quad \varepsilon_{A}=\int \widetilde{A}=\int \vec{A} \cdot d l$
2-dim: $\omega^{(2)}=\sigma d a, \sigma d \vec{a}, \vec{B} d a \vec{B} \cdot d \vec{a}, \vec{B} \times d \vec{a}$
3-dim: $\omega^{(3)}=\rho d \tau, \quad \vec{F} d \tau$
Flux:
$\Phi_{B}=\int \widetilde{B}=\int \vec{B} \cdot d \vec{d}$
$Q_{p}=\int \tilde{D}=\int \rho d \tau$
~"differential forms" are the things after the all have a 'd' somewhere inside
~ often $d \vec{l}, d \vec{a}, d \tau$ are burried inside of another ' d '
current element $d q \equiv q_{i}^{(0)}, \lambda d l^{(1)}, \sigma d a^{(2)}, \rho d \tau^{(3)}$
charge element $d \vec{q} \equiv \vec{v} q_{i}$, $I d \vec{l}, \vec{K} d a, \quad \vec{J} d \tau$
\sim two types of regions:
over the region $R: \quad \int_{R} \omega$ (open region)
over the boundary ∂R of $R: \oint_{\partial R} \omega$ (closed region)

* recipe for ALL types of integration
a) Parametrize the region
\sim parametric vs relations equations of a region
~ boundaries translate to endpoints on integrals

$$
\begin{aligned}
& \text { coordinates on } \\
& \text { path/surface/volume }
\end{aligned}
$$

$$
\text { Fd } P: \vec{r}(t)
$$

$$
2-d S \vec{r}(S, t)
$$

$\sim x, y, z$ become functions of s, t, u

$$
\overrightarrow{d l}=\frac{d \vec{r}}{d t} d t
$$

$$
x=x(t) \quad d x=x^{\prime} d t
$$

\sim differentials: $d x, d y, d z$ become $d s, d t, d u$

$$
d \vec{a}=\frac{\partial \vec{r}}{\partial s} \times \frac{\partial \vec{r}}{\partial t} d s d t
$$

~ reduce using the chain rule

$$
\begin{aligned}
& \int_{R} \vec{A} \cdot d \vec{l}=\int_{\vec{x}(t)} A_{x}(x, y, z) d x+A_{y}(x, y, z) d y+A_{z}(x, y, z) d z \\
& =\int_{t=a}^{b} A_{x}(x(t), y(t), z(t)) \frac{d x}{d t} d t+A_{y}(x(t), y(t), z(t)) \frac{d y}{d t} d t
\end{aligned}
$$

c) Integrate ind integrals using calculus of one variable

* example: line \& surface integrals on a paraboloid (Stoke's theorem)

boundary of coordinates $\int_{s=0}^{b} \int_{t=t(s)}^{t_{1}(s)}$

b) Pull back the paranters

$$
\begin{aligned}
& \begin{array}{ll}
\vec{A}=y z \hat{x} & S: z=\frac{1}{4} x^{2}+y^{2}=s^{2}\left(c_{\phi}^{2}+S_{\phi}^{2}\right) \\
0<z<1 & \partial S: 1=\frac{1}{4} x^{2}+y^{2}
\end{array} \\
& \begin{array}{ll}
x=2 s c_{\phi} & d x=2 d s c_{\phi}+-2 s s_{\phi} d_{\phi} \\
y=s s_{\phi} & d y=d s s+s c_{\phi} d_{\phi}
\end{array} \\
& \begin{array}{ll}
y=s s_{\phi} & d y=d s s_{\phi}+s c_{\phi} d_{\phi} \\
z=s^{2} & d z=\underbrace{2 s \cdot d s}
\end{array} \\
& d l=\underbrace{d s}_{\frac{\partial \vec{F}}{\partial s} d s} \overline{\frac{\partial F}{\partial \phi} d \phi}=d l_{s}+d l_{\phi} \\
& d \vec{a}=d l_{s} \times d l_{\phi}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
2 c_{\phi} S_{\phi} & 2 s \\
-2 s S_{\phi} & s c_{\phi} & 0
\end{array}\right| d s d \phi \\
& =\left(-\hat{x} 2 s^{2} q_{\phi}-\hat{y} 4 s^{2} s_{\phi}+\hat{z} 2 s\right) d s d \phi \\
& \partial S: \vec{r}(s, \phi) \quad s=1 \quad d s=0 \quad d l=d \vec{l}_{\phi}(s=1) \\
& \oint_{\partial s} \vec{A} \cdot d \overrightarrow{d l}=\int_{\partial s} y z d x=-2 \int_{0}^{2 \pi} s_{\phi}^{1 / 2} d \phi=-2 \pi \\
& \text { * alternate method: substitute for } d x, d y, d z \text { (antisymmetric) } \\
& \int_{S} \nabla \times \vec{A} \cdot d \vec{a}=\int_{S}\left(\hat{y} \partial_{z}-\hat{z} \partial_{y}\right) y z \cdot d \vec{a}=\int_{S} y d a_{y}-z d a_{z} \\
& =\int_{0}^{1} \int_{0}^{2 \pi}\left(s \cdot s_{\phi}-4 s^{2} s_{\phi}-s^{2} \cdot 2 s\right) d s d \phi \\
& =\int_{0}^{1} d s \int_{0}^{2 \pi}-4 s^{3} s_{1 / 2}^{2}-2 s^{3} d \phi \\
& =\int_{0}^{1}-4 s^{3} \cdot d s \cdot 2 \pi=\left.\frac{-4 s^{4}}{4}\right|_{0} ^{1} \cdot 2 \pi=-2 \pi \\
& \int_{s} y d z d x-z d x d y=\int_{s} s s_{\phi} \cdot 2 s d s \cdot\left(2 c_{\phi} d s-2 s s_{\phi} d \phi\right) \\
& =\int-4 s^{3} s^{2} d s d \phi-s^{2}\left(2 c_{\phi} d s-2 s s_{\phi} d \phi\right)\left(s_{\phi} d s+s c_{\phi} d \phi\right) \\
& \begin{array}{l}
=\int_{s}-4 s^{3} s_{\phi}^{2} d s d \phi-2 s^{3} c_{\phi}^{2} d s d \phi+2 s^{3} s_{\phi}^{2}-\frac{d \phi}{-d s d \phi} \\
=\int_{s}\left(-6 s_{\phi}^{2}-2 c_{\phi}^{2}\right) s^{3} d s d \phi
\end{array}
\end{aligned}
$$

Flux, Flow, and Substance

* Differential forms
scalar: $\quad \varphi^{(0)}=\varphi(x)$
vector: $\quad d \varepsilon^{(1)}=\widetilde{A}=\vec{A} \cdot \overrightarrow{d l}=A_{x} d x+A_{y} d y+A_{z} d z$
pseudovector:
psendoscalar:
$d q^{(3)}=\widetilde{\beta}=\rho d \tau=\rho d x d y d z$

Name Geometrical picture
level curves
equipotentials (flow sheets) $d \Phi^{(k)}=\widetilde{B}=\vec{B} \cdot d \vec{a}=B_{x} d y d z+B_{y} d z d x+B_{z} d x d y$ field lines (flux tubes)

* Derivative'd'

| scalar: | $d \varphi$ | $=\nabla \varphi \cdot d \overrightarrow{ }$ | grad |
| :--- | :--- | :--- | :--- | same equipotential surfaces

* Definite integral
scalar:
vector: $\quad \varepsilon=\int_{p} \widetilde{A}=\int_{p} \vec{A} \cdot d l \quad$ flow of surfaces pierced by path
pseudovector: $\Phi=\int_{S} \widetilde{B}=\int_{S} \vec{B} \cdot d \vec{a} \quad$ flux of tubes piercing surface
pseudoscalar: $Q=\int_{V} \widetilde{\rho}=\int_{V} d q \quad$ subst \quad of boxes inside volume

$\Delta f=\int_{a}^{b} d f=f(b)-f(a)=-4$
$\oint d f=\Delta f=0$
$d f=\nabla f \cdot d \vec{l} \quad \vec{E} \cdot d \vec{l}=\widetilde{E}$

$$
\begin{gathered}
\varepsilon_{H}=\int_{a}^{b} \widetilde{H}=\int_{a}^{b} \vec{H} \cdot \overrightarrow{d l}=+3 \\
\varepsilon_{H}=\oint_{\partial R} \tilde{H}=\int_{R} d \tilde{H}=\int \widetilde{J}=I=+4 \\
d \tilde{H}=d(\vec{H} \cdot d \vec{l})=(\nabla \times \vec{H}) \cdot d \vec{a}=\vec{J} \cdot d \vec{a}=\widetilde{J}
\end{gathered}
$$

$$
\Phi_{D}=\int_{S} \vec{D} \cdot d \vec{u}=\int_{S} \tilde{D}=+2
$$

$$
\Phi_{D}=\oint_{\partial R} \widetilde{D}=\int_{R} d \widetilde{D}=\int_{R} \widetilde{P}=Q=+4
$$

$$
d \widetilde{D}=d(\bar{D} \cdot d \vec{a})=\nabla \nabla \cdot \vec{D} d \tau=\rho d \tau=\widetilde{\rho}
$$

Stoke's theorem
\# of flux tubes puncturing disk (S) bounded by closed path
EQUALS \# of surfaces pierced by closed path (2S)
~ each surface ends at its SOURCE flux tube

* Divergence theorem

\# of substance boxes found in volume (R) bounded by closed surface EQUALS \# of flux tubes piercin the closed surface (∂R)
~ each flux tube ends at its SOURCE substance box

Section 1.3.2-5 - Region 1 Form = Integral

* Regions

~ definition of boundary operator ' ∂ '
'closed' region (cycle):
\sim a boundary is always closed
$\partial S=0$
$\partial \partial R=0$
~ a room (walls, window, ceiling, floor) is CLOSED if all doors, windows closed is OPEN if the door or window is open; what is the boundary?
~ think of a surface that has loops that do NOT wrap around disks!
* Forms - see last notes
~ combinations of scalar/vector fields and differentials so they can be integrated ~ pictoral representation enables 'integration by eye'

RANK
scalar NOTATION
vector

$$
\begin{array}{ll}
\text { NOTATION } & \partial T \text { REGION } \\
\omega^{(0)}=f & \partial Q \text { point } \\
\omega^{(1)}=\widetilde{A}=\vec{A} \cdot \overrightarrow{d l} & \partial \text { path } \\
\omega^{(2)}=\widetilde{B}=\vec{B} \cdot d \vec{a} & \partial \widetilde{S} \text { surface } \\
\omega^{(3)}=\widetilde{p}=\rho d r & \text { volume }
\end{array}
$$

p-vector
p-scalar $\quad \omega^{(3)}=\tilde{\rho}=\rho d \tau$
~ properties of differential operator 'd' transforms form into higher-dimensional form, sitting on the boundary
~ Poincare lemma $\quad d d \omega=0$
~ converse - existance of potentials V, \vec{A}

$$
d \omega=0 \Leftrightarrow \omega=d \alpha, \quad \nabla \times E=0 \Leftrightarrow E=-\nabla V \quad \nabla \cdot \vec{B}=0 \Leftrightarrow \vec{B}=\nabla \times \vec{A}
$$

for space without any n-dim 'holes' in it

* Integrals - the overlap of a region on a form = integral of form over region ~ regions and forms, are dual - they combine to form a scalar
~ generalized Stoke's therem:
' ∂ ' and 'd' are adjoint operators - they have the same effect in the integral

$$
\int_{R} d \omega=\oint_{\partial R} \omega \quad \text { note: } O=\int_{\partial \partial R} \omega=\int_{\partial R} d \omega=\int_{R} d d \omega=0
$$

Generalized Stokes Theorem

* Fundamental Theorem of Vector Calculus: Od-ld

$$
\int_{a}^{b} \nabla \varphi \cdot d \vec{l}=\int_{a}^{b} d f=f(b)-f(a)
$$

* Stokes' Thereon: Id-2d

$$
\begin{aligned}
\nabla \times \vec{A} \cdot d \vec{a} & =\frac{\partial A_{y}}{\partial x} d x d y-\frac{\partial A_{x}}{\partial y} d x d y+\ldots \\
& =A_{y}\left(x^{+}\right) d y+A_{y}(x)(-d y)+A_{x}\left(y^{+}\right)(-d x)+A_{x}(\vec{y}) d x+\ldots
\end{aligned}
$$

$=\sum \vec{A} \cdot \sqrt{l}$ around boundary t other faces

* Gaur' Thereon: 2d-3d (divergence theorem)

$$
\begin{aligned}
\nabla \cdot \vec{B} d \tau & =\frac{\partial B_{x}}{\partial x} d x d y d z+\frac{\partial B_{y}}{\partial y} d y d z d x+\frac{\partial B_{z}}{\partial z} d z d x d y \\
& =B_{x}\left(x^{+}\right) d y d z+B_{x}(\vec{x})(-d y d z)+4 \text { other faces } \\
& =\sum \vec{B} \cdot d \vec{a} \text { around boundary }
\end{aligned}
$$

* note: all interior $f(x)$, flow, and flux cancel at opposite edges
* proof of converse Poincare lemma: integrate form out to boundary
* proof of gen. Stokes theorem: integrate derivative out to the boundary

$$
\int_{R} d \omega=\oint_{\partial R} \omega \quad \Longleftrightarrow \quad \int_{P} x \varphi \cdot \overrightarrow{d l}=\oint_{\partial P} \varphi \quad \int_{S} \operatorname{lr}_{R} \vec{A} \cdot d \vec{a}=\oint_{\partial S} \vec{A} \cdot d \vec{l} \quad \int_{R} P \cdot \vec{B} d \tau=\oint_{\partial R} \vec{B} \cdot d \vec{a}
$$

* example - integration by parts

$$
\begin{aligned}
\nabla \cdot\left(\frac{\hat{r}}{r^{2}} f\right) & =\left(\nabla \cdot \frac{\hat{r}}{r^{2}}\right) f+\frac{\hat{r}}{r^{2}} \cdot \nabla f \\
\int_{\nu} \frac{\hat{r}}{r^{2}} \cdot \nabla f d \tau & =\int_{\nu} \nabla \cdot\left(\frac{\hat{r}}{r^{2}} f\right) \cdot d \tau-\int_{\nu}\left(\nabla \cdot \frac{\hat{r}}{r^{2}}\right) f d \tau \\
\int_{\nu} \frac{1}{r^{2}} \frac{\partial f}{\partial r} r^{2} d r \cdot d \Omega & =\oint_{\partial \nu} d \vec{a} \cdot \frac{\hat{r}}{r^{2}} f-\int_{\nu} 4 \pi \delta^{3}(\hat{r}) f d \tau \\
\int d \Omega \int_{r=0}^{R} d f & =\int_{\nu} r^{2} d \Omega \hat{r} \cdot \frac{\hat{r}}{r^{2}} f-4 \pi f(0) \\
\int d \Omega f(R)-f(0) & =\int d \Omega f(R, \theta, \phi)-4 \pi f(0) \\
4 \pi\left[\langle f\rangle_{R}-f(0)\right] & =4 \pi\left[\langle f\rangle_{R}-f(0)\right]
\end{aligned}
$$

Section 1.5 - Dirac Delta Distribution

* Newton's law: yank = mass \times jerk http://wikipedia.org/wiki/position_(vector)

* definition: $d \theta=\delta\left(x-x^{\prime}\right) d x$ is defined by its integral (a distribution, differential, or functional)

$$
\int_{a}^{b} \underbrace{\delta(x) d x}_{d \theta \text { "differential" }}=\int_{a}^{b} d \theta=\left.\theta(x)\right|_{a} ^{b}= \begin{cases}1 & a<0<b \\ 0 & \text { otherwise }\end{cases}
$$

$$
\delta(x)=\left\{\begin{array}{lll}
0 & \text { if } x \neq 0 & \text { it is a "distribution," } \\
\infty & \text { if } x=0 & \text { NOT a function! }
\end{array}\right.
$$

* important integrals related to $\delta(x)$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \theta(x) f(x) d x=\int_{0}^{\infty} f(x) d x \quad \text { "mask" } \\
& \int_{-\infty}^{\infty} \delta(x) f(x) d x=f(0) \quad \text { "slit" } \\
& \int_{-\infty}^{\infty} \delta^{\prime}(x) f(x) d x=f(x) \delta(x) \mid-\int_{-\infty}^{\infty} f^{\prime}(x) \delta(x) d x=-f^{\prime}(0)
\end{aligned}
$$

* $\delta\left(x-x^{\prime}\right)$ is the an "undistribution" - it integrates to a lower dimension

$$
\begin{aligned}
& \int_{C} d q=\int_{C} \lambda d l=\int_{C} q \underbrace{\delta(t) d t}_{d \theta}=q \\
& \int_{A} d q=\int_{A} \sigma d a=\int_{A} \lambda(t) \underbrace{\delta(s) d s}_{d \theta} d t=\int_{C} \lambda(t) d t=q \\
& \int_{V} d q=\int_{V} \rho d t=\int_{V} \sigma(s, t) \underbrace{\delta(n) d n} d s d t=\int_{A} \sigma d a=q \\
& \text { or }=\int_{V} q \delta^{3}(\vec{r})=q \quad \text { or }=\int_{V} \lambda \delta^{2}(\vec{r})=q
\end{aligned}
$$

* $\delta\left(x-x^{\prime}\right)$ gives rise to boundary conditions - integrate the diff. eq. across the boundary

$$
\begin{array}{rlr}
\nabla \cdot \vec{D}=\rho=\sigma(s, t) \delta(n) & \quad \int_{n=0^{-}}^{0^{+}} d n\left(\frac{\partial D_{n}}{\partial n}+\frac{\partial D_{s}}{\partial S}+\frac{\partial D_{t}}{\partial \theta}\right)=\int_{0^{-}}^{0^{+}} \sigma(s, t) \delta(n) d n \\
\nabla>\hat{n} \cdot \Delta \quad \rho \rightarrow \sigma \quad \vec{J} \rightarrow \vec{k} & \hat{n} \cdot \Delta \vec{D}=\sigma
\end{array}
$$

* $\delta\left(x-x^{\prime}\right)$ is the "kernel" of the identity transformation

$$
f=I f \quad f(x)=\underbrace{\int_{\text {identity operator }}^{\infty} d x^{\prime} \delta\left(x-x^{\prime}\right)}_{\begin{array}{c}
\text { (component } \\
\text { form })
\end{array}} f\left(x^{\prime}\right)
$$

* $\delta\left(x-x^{\prime}\right)$ is the continuous version of the "Kroneker delta" $\delta_{i j}$

$$
a=I a \quad a_{i}=\sum_{j=1}^{n} \delta_{i j} a_{j} \quad\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)
$$

Linear Function Spaces

* functions as vectors (Hilbert space)
~ functions under pointwise addition have the same linearity property as vectors
VECTORS FUNCTIONS
\sim addition $\quad \vec{W}=\vec{v}+\vec{u} \quad w_{i}=v_{i}+u_{i} \quad h=f+g \quad h(x)=f(x)+g(x)$
~ expansion

$$
\stackrel{\rightharpoonup}{V}=\underbrace{\sum_{i} v_{i}}_{\text {index }}=\underbrace{V_{1}}_{\text {component basis vector }} \hat{e}_{1}+V_{2} \underbrace{\hat{e}_{2}}_{2}+\ldots
$$

$$
\text { or } f(x)=\sum_{i=0}^{\infty} \overbrace{f_{i}}^{\text {index }} \cdot \overbrace{\phi_{i}(x)}^{\text {component basis function }}
$$

~ graph

~ inner product
(metric, symmetric
bilinear product)

$$
\vec{V} \cdot \vec{u}=\sum_{i=1}^{n} V_{i} u_{i}
$$

~ orthonormality
(independence)

$$
\hat{e}_{i} \cdot \hat{e}_{j}=\delta_{i j} \quad \int_{-\infty}^{\infty} \phi_{i}(x) \phi_{j}(x)=\delta_{i j}
$$

$$
\begin{gathered}
\langle f \mid g\rangle=\int_{-\infty}^{\infty} d x f(x) g(x) \\
\int_{-\infty}^{\infty} \phi_{i}(x) \phi_{j}(x)=\delta_{i j} \int_{x^{\prime}=-\infty}^{\infty} \delta\left(x-x^{\prime}\right) \delta\left(x^{\prime}-y\right)=\delta(x-y) \\
\sum_{i=0}^{\infty} \phi_{i}(x) \phi_{i}(y)=\int_{x^{\prime}=-\infty}^{\infty} \delta\left(x-x^{\prime}\right) \delta\left(x^{\prime}-y\right)=\delta(x-y) \\
f=H g \quad f(x)=\int_{-\infty}^{\infty} d x^{\prime} H\left(x, x^{\prime}\right) g\left(x^{\prime}\right) \\
\tilde{f}(k)=\frac{1}{2 \pi} \int^{\int} d x e^{i k x} f(x) \\
\int d k e^{-i k x} e^{i k x^{\prime}}=\int d k e^{-i k\left(x-x^{\prime}\right)}=2 \pi \delta\left(x-x^{\prime}\right) \\
H \quad \phi(x)=\lambda \phi(x) \\
(\text { Sturm-Liouville problems) } \\
\frac{\delta F[\rho(x)]}{\delta \rho} \quad \text { (functional } \\
\text { minimization) }
\end{gathered}
$$

~ closure
(completeness)

$$
\sum_{i=1}^{n} \hat{e}_{i} \hat{e}_{i} \cdot=I
$$

$$
\vec{u}=A \vec{v} \quad u_{i}=A_{i j} v_{j}
$$

~ orthogonal rotation
(change of coordinates)
(Fourier transform)
~ eigen-expansion
(stretches)
(principle axes)
~ gradient,
functional derivative

$$
x^{\prime}=R x
$$

$$
R^{\top} R=I
$$

$$
A \vec{v}=\vec{v} \lambda
$$

$$
A V=V W
$$

* Sturm-Liouville equation - eigenvalues of function operators (2 $2^{\text {nd }}$ derivative)

$$
\mathcal{L}[y]=-\frac{d}{d x}\left[p(x) \frac{d}{d x} y\right]+q(x)=\lambda \omega(x) y \quad B C: y(a), y(b)
$$

\sim there exists a series of eigenfunctions $y_{n}(x)$ with eigenvalues λ_{n}
~ eigenfunctions belonging to distinct eigenvalues are orthogonal $\left\langle y_{i} \mid y_{j}\right\rangle=\delta_{i j}$

Green Functions $G\left(x, x^{\prime}\right)$

* Green's functions are used to "invert" a differential operator ~ they solve a differential equation by turning it into an integral equation
* You already saw them last year! (in Phr 232)
\sim the electric potential of a point charge
$\oint(.5): \nabla \cdot \frac{\hat{r}}{r^{2}}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{1}{r^{2}}\right)=0$
C) $\nabla \frac{1}{r}=\hat{r} \frac{\partial}{\partial} \frac{1}{r}=\frac{-\hat{r}}{r^{2}}$
a) $\frac{1}{r^{2}} \rightarrow \infty$ at $r=0$ "singularity"
b) $\int_{\nu} \nabla \cdot \frac{\hat{r}}{r^{2}} d \tau=\oint_{\partial v} d \vec{a} \cdot \frac{\hat{r}}{r^{2}}=\oint_{\Omega} d \Omega r^{2} \frac{1}{r^{2}}=4 \pi$
independent of volume if θ inside thus $\nabla \cdot \frac{\hat{r}}{r^{2}}=4 \pi \delta^{3}(\vec{r})$

* Green's functions are the simplest solutions of the Poisson equation

$$
G(\vec{r}, \vec{r}) \equiv G(r)=\frac{-1}{4 \pi r}=\nabla^{-2} \delta^{3}(\vec{r})
$$

~ is a special function which can be used to solve Poisson equation symbolically using the "identity" nature of $\delta^{3}\left(\vec{r}-\vec{r}^{\prime}\right)=\delta^{3}(\vec{r})$
~ intuitively, it is just the "potential of a point source"

$$
\nabla^{2} G(r)=\nabla \cdot \nabla \frac{-1}{4 \pi r}=\nabla \cdot \frac{r}{4 \pi r^{2}}=\delta^{3}(\vec{r}) \quad \vec{r} \equiv \vec{r}-\vec{r}
$$

let $V=\int_{V}-G(r) \frac{\rho\left(\vec{r}^{\prime}\right)}{\varepsilon_{0}} d \tau^{\prime} \quad$ (Solution to Poisson's eq.)

$$
\nabla^{2} V=\int_{V^{\prime}}^{-} \frac{\rho(\vec{r})}{\varepsilon_{0}} \nabla^{2} G\left(\vec{r}-\vec{r}^{\prime}\right) d t^{\prime}=\int_{\nu^{\prime}}-\frac{\rho\left(\vec{r}^{\prime}\right)}{\varepsilon_{0}} \delta^{3}\left(\vec{r}-\vec{r}^{\prime}\right) d \tau^{\prime}=-\frac{\rho(\vec{r})}{\varepsilon_{0}}
$$

* this generalizes to one of the most powerful methods of solving problems in E\&M ~ in QED, Green's functions represent a photon 'propagator'
~ the photon mediates the force between two charges
~ it 'carries' the potential from charge to the other

$$
u=\int \rho V d \tau=\iint \rho G \rho^{\prime} d t d \tau^{\prime}
$$

Section 1.6 - Helmholtz Theorem

* orthogonal projections P_{11} and P_{\perp} : a vector \vec{n} divides the space X into $X_{\| n} \oplus X_{1 n}$ geometric view: dot product $\hat{h} \cdot \vec{x}$ is length of \vec{x} along \hat{h} Projection operator: $P_{11} \equiv \hat{h} \hat{n}$. acts on $x: P_{11} \vec{x}=\vec{x}_{11}=\hat{n} \hat{n} \cdot \vec{x}$ ~ orthogonal projection: $\hat{h} \times$ projects \perp to \hat{h} and rotates by 90°

$$
\begin{aligned}
& \hat{X}_{1}=- \\
& \text { tudinal/ } \\
& \vec{F}=0 \\
& \vec{F}=\vec{J}
\end{aligned}
$$

$$
P_{11}+P_{\perp}=\hat{n} \hat{n}_{0}-\hat{n} \times \hat{n} x=I
$$

* Iongtudinal/transverse separation of Laplacian (Hodge decomposition)
$\nabla \cdot \vec{F}=0$
$\nabla \times \vec{F}=\vec{J}$
~ proof:
\sim formally, $\quad \vec{F}=-\nabla(\underbrace{-\nabla^{-2} \stackrel{\overbrace{\nabla} \cdot F}{\rho}}_{V})+\nabla \times(\underbrace{-\underbrace{-2} \overbrace{\bar{\nabla} \times \vec{F}}^{\vec{\tau}}}_{\stackrel{\rightharpoonup}{A}})$
\sim what does ∇^{-2} mean? Note that $-\nabla^{2} \frac{1}{4 \pi r}=\delta^{3}(\vec{r})$
~ thus $\nabla^{-2} \delta^{3}(\vec{r})=\frac{-1}{4 \pi r} \equiv G(\vec{r}) \quad$ (see next page) $\quad G=\frac{-1}{4 \pi r}$ is Green in
use the δ-identity $\rho(\vec{r})=\int d \pi^{\prime} \delta^{3}(\vec{r}) \rho\left(\vec{r}^{\prime}\right)$

$$
\begin{aligned}
& V(\vec{r}) \equiv-\nabla^{-2} \rho(\vec{r})=\int d \tau^{\prime}\left(-\nabla^{2} \delta^{3}(\vec{r})\right) \rho\left(\vec{r}^{\prime}\right)=\int d \tau^{\prime} \frac{\rho\left(\vec{r}^{\prime}\right)}{4 \pi r}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{d q}{r} \\
& \vec{A}(\vec{r}) \equiv-\nabla^{-2} \vec{J}(\vec{r})=\int d \tau^{\prime}\left(-\nabla^{-2} \delta^{3}(\vec{r})\right) \vec{J}\left(\vec{r}^{\prime}\right)=\int d \tau^{\prime} \frac{\vec{J}\left(\vec{r}^{\prime}\right)}{4 \pi r}=\frac{\mu_{0}}{4 \pi} \oint \frac{I d l}{r}
\end{aligned}
$$

~ thus any field can be decomposed into LIT parts \square with V, A defined above

SCALAR POTENTIAL V

* Theorem: the following are equivalent definitions of an "irrotational" field:
a) $\nabla \times \vec{F}=\overrightarrow{0}$ curl-less
b) $\vec{F}=-\mathbb{V} V$ where $V=\int \frac{d \tau^{\prime} \vec{\nabla} \cdot \vec{F}}{4 \pi r}$
c) $V(\vec{r})=\int_{r_{0}}^{\vec{r}}-\vec{F} \cdot \overrightarrow{\text { is indef }}$
is independent of path
d) $\oint \vec{F} \cdot \overrightarrow{d l}=0$ for any closed path
* Gauge invariance:
if $\vec{F}=-\nabla V_{1}$ and also $\vec{F}=-\nabla V_{2}$
then $\nabla\left(V_{2}-V_{5}\right)=0$ and $V_{2}-V_{1}=V_{0}$ is constant ("ground potential")

$$
\text { VECTOR POTENTIAL } \vec{A}
$$

* Theorem: the following are equivalent definitions of a "solenoidal" field:
a) $\nabla \cdot \vec{F}=0$ divergence-less
b) $\vec{\forall}=\nabla \times \vec{A}$ where $\vec{A}=\int \frac{d \tau \nabla \times \vec{F}}{4 \pi r}$
c) ? $=\int_{S} \vec{F} \cdot d \vec{a}$ with ∂S fixed is independent of surface
d) $\oint \vec{F} \cdot d \vec{a}=0$ for any closed surface
* Gauge invariance:
if $\vec{F}=\nabla \wedge \vec{A}_{1}$ and also $\vec{F}=\nabla \times \vec{A}_{2}$
then $\nabla \times\left(A_{2}-A\right)=0$ and $A_{2}-A=\nabla \lambda(r)$ ("gauge transformation")

Section 2.1 - Coulomb's Law

* Electric charge (duFay, Franklin)
$\sim+$,- equal \& opposite ($Q C D: r+g+b=0$)
$\sim e=1.6 \times 10^{-19} C$, quantized $\left(g_{n}\left\langle 2 \times 10^{-21} e\right)\right.$
~ locally conserved (continuity)

Seventbly, Chance has thrown in my Way another Principle, more univerfal and remarkable than the preceding one, and which cats a new Eight on the Subject of Electricity. This Principle is, that there are two diftinct Electricities, very different from one another; one of which I call vitreous Electricity, and the other resinous Electricity. The firft is that of Glass, Rock-Cryftal, Precious Stones, Hair of Animals, Wool, and many other Bodies: The fecond is that of Amber, Copal, GumLack, Silk, Thread, Paper, and a vat Number of other Substances. Charles François de Cisternay DuFay, 1734 http:/ / www.sparkmuseum.com/BOOK_DUFAY.HTM

* only for static charge distributions (test charge may move but not sources)
a) Coulomb's law

$$
\begin{aligned}
& \vec{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q Q}{r^{2}} \hat{r} \\
& \vec{F}=\vec{F}_{1}+\vec{F}_{2}+\ldots
\end{aligned}
$$

\sim Coulomb: torsion balance
~ Cavendish: no electric force inside a hollow conducting shell
~ Born-Infeld:
vacuum polarization violates superposition at the level of $\alpha^{2}=\frac{1}{137^{2}}$
\sim linear in both $8 \& Q$ (superposition)
~ central force $\vec{r} \equiv \vec{r}-\vec{r}$ '
~ inverse square (Gauss') law $\frac{1}{r^{2}}$
~ units: defined in terms of magnetostatics

$$
\begin{aligned}
& \varepsilon_{0}=8.85 \times 10^{-12} \frac{C^{2}}{\mathrm{Nm}^{2}} \\
&=\frac{1}{\mu_{0} C^{2}} \\
& \mid C \equiv 1 \mathrm{~A} \cdot \mathrm{~S} \quad F=2 \times 10^{-7} \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

(for parallel wires 1 m apart carrying i A each)
~ rationalized units to cancel 4π in

$$
\nabla \cdot \frac{\hat{r}}{r^{2}}=4 \pi \delta^{3}(\vec{r})
$$

* Electric field
~ we want a vector field, but Fonly at test charge
\sim action at a distance:
the field 'caries' the force from source pt. to field pt.

$$
\begin{aligned}
& \vec{F}= \\
& \quad \underbrace{\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q_{1} \hat{r}_{1}}{r_{1}^{2}}+\frac{q_{2} \hat{r}_{2}}{r_{2}^{2}}+\ldots\right) Q=Q \vec{E}} \\
& \quad \vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i} \frac{q_{i} \hat{r}_{i}}{r_{i}^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} \frac{\rho\left(\vec{r}^{\prime}\right) d \tau^{\prime} \hat{r}}{r^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{d q^{\prime} \hat{r}^{\prime}}{r^{2}} \\
& d q^{\prime} \rightarrow q_{i}=q\left(\vec{r}_{i}^{\prime}\right) \text { or } \lambda\left(\vec{r}^{\prime}\right) d l^{\prime} \text { or } \sigma\left(\vec{r}^{\prime}\right) d a^{\prime} \text { or } \rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}
\end{aligned}
$$

* Example (Griffith Ex. 2.1)

$$
\begin{array}{rlrl}
\vec{E} & =\frac{1}{4 \pi \varepsilon_{0}} 2 \cdot \int_{x^{\prime}=0}^{L} \frac{d q^{\prime} \vec{r}}{r^{3}}=\frac{1}{4 \pi \varepsilon_{0}} \int_{0}^{L} \frac{2 \lambda d x^{\prime} \cdot z \hat{z}}{\left(z^{2}+x^{\prime 2}\right)^{3 / 2}}+O \hat{x} \\
& =\hat{z} \frac{2 \lambda}{4 \pi \varepsilon_{0} z} \int \frac{\sec ^{2} \theta d \theta}{\sec ^{3} \theta} & & 1+\tan ^{2} \theta=\sec ^{2} \theta \\
& =\left.\hat{z} \frac{2 \lambda}{4 \pi \varepsilon_{0} z} \underbrace{\sin \theta}_{x^{\prime} / r}\right|_{x^{\prime}=0} ^{L} & x^{\prime}=z \tan \theta \\
& =\hat{z} \frac{2 \lambda}{4 \pi \varepsilon_{0} z} \frac{d x^{\prime}}{}=z \sec ^{2} \theta d \theta \\
\sqrt{z^{2}+L^{2}} & \begin{aligned}
r^{3} & =\left(z^{2}+x^{\prime 2}\right)^{3 / 2} \\
& =z^{3} \sec ^{3} \theta
\end{aligned}
\end{array}
$$

$$
d_{q^{\prime}}^{\prime}=\lambda d x^{\prime}=\lambda z \sec ^{2} \theta d \theta
$$

$$
\text { as } z \rightarrow \infty \vec{E} \approx \frac{1}{4 \pi \varepsilon_{0}} \frac{2 \lambda L}{z^{2}} \quad \text { as } L \rightarrow \infty \vec{E} \approx \frac{1}{4 \pi \varepsilon_{0}} \frac{2 \lambda}{z}
$$

* 5 formulations of electrostatics

Coulomb eq. \& Superposition

$$
\begin{aligned}
& \text { Gauss' law } \\
& \sim \text { solid angle } \\
& d \Omega=\frac{\hat{r} \cdot d \vec{a}}{r^{2}} \\
& \sim \text { angle (rad.) } \\
& d \vec{\theta}=\frac{\hat{r} \times d \vec{l}}{r}
\end{aligned}
$$

\sim solid angle of a sphere
$d \Omega=\sin \theta d \theta d \phi=-d \cos \theta d \phi$
$\int \Omega=\int_{\theta=0}^{\pi}-d \cos \theta \cdot \int_{\phi=0}^{2 \pi} d \phi=2 \cdot 2 \pi=4 \pi$
" $\frac{1}{r^{2}}$ force laws mean there is a
const. flux "carrier" field

* Divergence theorem: relationship between differential and integral forms of Gauss' law

$$
\Phi_{E}=\int_{\partial \nu} \vec{E} \cdot d a=\oint_{\nu} \frac{q \hat{r}}{4 \pi \varepsilon_{0} r^{2}} \cdot \hat{r} r^{2} d \Omega=\frac{q}{\varepsilon_{0}} \rightarrow \int_{\nu} \frac{d q}{\varepsilon_{0}}
$$

$$
\int_{V} \nabla \cdot \vec{E} d \tau=\int_{V} P / \varepsilon_{0} d \pi
$$

~ since this is true for any volume, we can remove the integral from each side

$$
\nabla \cdot \vec{E}=P / \varepsilon_{0}
$$

~ all of electrostatics comes out of Coulomb's law \& superposition principle
w we use each of the major theorems of vector calculus to rewrite these into five different formulations - each formulation useful for solving a different kind of problem
~ geometric pictures comes out of
schizophrenetic personalities of fields:

* FLOW (Equipotential surfaces)
$\varepsilon_{E} \equiv \int \vec{E} \cdot d \overrightarrow{l l}$ ~ integral ALONG the field ~ potential = work / charge
$\sim \varepsilon_{\text {e equals } \# \text { of equipotential crossed }}$
$\sim \Delta \varepsilon_{E}=0$ along an equipotential surface
\sim density of surfaces $=$ field strength
* FLUX (Field lines)
$\Phi_{E} \equiv \int \vec{E} \cdot \overrightarrow{d l} \quad$ integral ACROSS the field
$d \Phi=\vec{E} \cdot d \vec{a}=\#$ of lines through area

$$
\vec{E}=\frac{d \Phi}{d \vec{a}}
$$

\sim closed loop

$\int_{S} d \Phi_{E}=\#$ of lines through loop
~ closed surface

$\int_{S} d \Phi_{E}=$ net \# of lines out out of surface = \# of charges inside volume
E. is unit of proportionality of flux to charge

Section 2.3 - Electric Potential

* two personalities of a vector field: $F l u x=\Phi_{E}=\int_{S} \vec{E} \cdot d \vec{a}$ (streamlines) through an area Dr. Jekyl and Mr. Hyde Flow $=\varepsilon_{E}=\int_{P} \vec{E} \cdot \overrightarrow{d l}$ (equipotentials) downstream
* direct calculation of flow for a point charge

$$
\begin{aligned}
\varepsilon_{E} & =\int_{\vec{r}=a}^{b} \vec{E} \cdot \overrightarrow{d l}=\int_{\nu^{\prime}} \frac{d q^{\prime}}{4 \pi \varepsilon_{0}} \int_{\vec{r}=a}^{b} \frac{\hat{r} \cdot \overrightarrow{d l}}{r^{2}} \\
& =\left.\left.\int_{\mathcal{V}^{\prime}} \frac{d q^{\prime}}{\varepsilon_{0}^{\prime}} \frac{1}{4 \pi r}\right|_{\vec{r}=\vec{r}_{a}} ^{\vec{r}_{b}} \equiv V(\vec{r})\right|_{a} ^{b}
\end{aligned}
$$

note: this is a perfect
differential (gradient)

$$
\begin{aligned}
& \frac{\hat{r} \cdot \overrightarrow{d l}}{r^{2}}=\frac{d r}{r^{2}}=d \frac{-1}{r} \\
& d f=\nabla f \cdot d \vec{l} \\
& \nabla r=\hat{r}
\end{aligned}
$$

~ open path: note that this integral is independent of path thus $V(\vec{r}) \equiv-\varepsilon_{E}=\int_{\vec{r}_{0}}^{\vec{E}} \overrightarrow{\vec{r}} \cdot \overrightarrow{d l}$ is well-defined by FTVC:

$$
\Delta V=\int_{\vec{r}_{0}}^{\vec{r}} \nabla V \cdot d \vec{l} \quad \text { so } \quad \vec{E}=-\nabla V
$$

~ ground potential $V\left(\vec{r}_{0}\right)=0$ (constant of integration)

\sim closed loop (Stokes theorem) $\quad \varepsilon_{E}=\oint_{\partial S} \vec{E} \cdot d \vec{l}=\int_{S} \nabla \times \vec{E} \cdot d \vec{a}=0 \quad \Leftrightarrow \quad \nabla \times E=0$
for any surface S

* Poincaré lemma: if $\vec{E}=-\nabla V$ then $\nabla \times \vec{E}=-\nabla \times \nabla V=0$
~ converse: if $\nabla \times \vec{E}=0$ then $\vec{E}=-\nabla V \quad$ so $\vec{E}=-\nabla V \Leftrightarrow \nabla \times \vec{E}=0$
* Poisson equation $\nabla \cdot \varepsilon_{0} F=-\nabla \cdot \varepsilon_{0} \nabla V=\rho$ or $\nabla^{2} V=\rho / \varepsilon_{0}$ ~ next chapter devoted to solving this equation - often easiest for real-life problems ~ a scalar differential equation with boundary conditions on E_{n} or V
~ inverse (solution) involves:
a) the solution for a point charge (Green's function)

$$
\begin{array}{ll}
V(\vec{r})=\int_{\nu^{\prime}} \frac{d q^{\prime} 1}{4 \pi \varepsilon_{0} r}=\int \frac{d q^{+}}{\varepsilon_{0}} G(\vec{r}) \text { where } G(\vec{r})=\frac{1}{4 \pi r} & \nabla^{2} G(\vec{r})=\delta^{3}(\vec{r}) \\
\nabla^{2} G=\nabla \cdot \nabla \frac{1}{4 \pi r}=\nabla \cdot \frac{-\hat{r}}{4 \pi r^{2}}=-\delta^{3}(\vec{r}) & G(\vec{r})=\nabla^{-2} \delta^{3}(\vec{r})
\end{array}
$$

b) an arbitrary charge distribution is a sum of point charges (delta functions)

$$
\nabla^{2} V=\int \frac{d q^{\prime}}{\varepsilon_{0}} \nabla^{2} G=\int_{\nu^{\prime}} \frac{\rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}}{\varepsilon_{0}} \delta^{3}(\vec{r})=\frac{\rho(\vec{r})}{\varepsilon_{0}} \quad \rho(\vec{r})=\int_{\nu^{\prime}}\left(\vec{r}^{\prime}\right) d \tau^{\prime} \delta^{3}\left(\vec{r}-\vec{r}^{\prime}\right)=\int_{\nu^{\prime}} d q^{\prime} \delta^{3}(\vec{r})
$$

going backwards:

$$
V=\nabla^{-2} \frac{\rho(\vec{r})}{\varepsilon_{0}}=\int_{\nu^{\prime}} \frac{\rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}}{\varepsilon_{0}} \nabla^{2} \delta^{3}(\vec{r})=\int_{\nu^{\prime}} \frac{d q^{\prime}}{\varepsilon_{0}} G(\vec{r})
$$

~ this is an essential component of the Helmholtz theorem

$$
\nabla^{2}=\nabla \nabla \cdot-\nabla x \nabla x
$$

* derivative chain

$$
V^{d} \stackrel{\rightharpoonup}{E} \stackrel{d}{\rightarrow} \rho
$$

~ inverting Gauss' law is more tortuous path!

$$
\rho \rightarrow V \rightarrow \vec{E} \quad \stackrel{\rightharpoonup}{E}=-\nabla V=\int \frac{d q^{\prime}}{4 \pi \varepsilon_{0}} \nabla \frac{-1}{r}
$$

$$
\begin{aligned}
& V \underset{-\int \vec{E} \cdot \overrightarrow{d l}}{\rightleftharpoons} \stackrel{-\nabla V}{\stackrel{\nabla}{E} \cdot \varepsilon_{0} \vec{E}} \underset{\int \frac{d q^{\prime} \hat{r}}{\rightleftharpoons}}{\alpha_{q^{\prime}}=\rho(\vec{r})} \rho
\end{aligned}
$$

Field Lines and Equipotentials

* for along an equipotential surface:
fo field lines are normal to equipotential surfaces
* dipole "two poles" - the word "pole" has two different meanings: (but both are relevant) a) opposite ($+V 5-, N V S 5$, bi-polar)
b) singularity ($1 / r$ has a pole at $r=0$)

* effective monopole (dominated by -28 for away)

* quadrupole (compare $H / \omega_{3} \#_{2}$)

Section $2 a$ - Examples

* show that $\nabla \cdot \vec{E}=\rho / \varepsilon_{0}$ from Coulomb's law note that $\quad \nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)=\left(\frac{\partial}{\partial\left(x-x^{\prime}\right)}, \frac{\partial}{\partial\left(y-y^{\prime}\right)}, \frac{\partial}{\partial\left(z-z^{\prime}\right)}\right)=\nabla_{r} \quad$ (if \vec{x}^{\prime} fixed)

$$
\begin{aligned}
& \nabla \cdot \int \frac{d q^{\prime} \hat{r}}{4 \pi \varepsilon_{0} r^{2}}=\nabla \cdot \int \frac{\rho\left(\vec{r}^{\prime}\right) d \tau^{\prime} \hat{r}}{4 \pi \varepsilon_{0} r^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \int_{v^{\prime}} \rho\left(\vec{r}^{\prime}\right) d \tau^{\prime} \nabla_{r} \cdot \frac{\hat{r}}{r^{2}} \\
& \quad=\frac{1}{4 \pi \varepsilon_{0}} \int \rho\left(\vec{r}^{\prime}\right) d \tau^{\prime} 4 \pi \delta^{3}(\vec{r})=\rho(\vec{r}) / \varepsilon_{0}
\end{aligned}
$$

* derive Coulomb's law from the differential field equations

$$
\begin{aligned}
& \nabla \cdot \vec{E}=\rho / \varepsilon_{0} \quad \nabla \times \vec{E}=0 \quad \nabla^{2}=\nabla \nabla \cdot-\nabla \times \nabla \times \\
\vec{E}= & -\nabla(\underbrace{-\nabla^{2} \nabla \cdot \vec{E}}_{V})+\nabla \times\left(-\nabla^{-2} \nabla \times \vec{E}\right)=-\nabla \int \frac{d t^{\prime} \nabla^{\prime} \cdot \vec{E}\left(\vec{r}^{\prime}\right)}{4 \pi r}=-\nabla \int \frac{d \tau^{\prime} \rho\left(\vec{r}^{\prime}\right)}{4 \pi \varepsilon_{0} r} \\
= & \int \frac{d \tau^{\prime} \rho\left(\vec{r}^{\prime}\right)}{4 \pi \varepsilon_{0}} \nabla \frac{-1}{r}=\int \frac{d \tau^{\prime} \rho\left(\vec{r}^{\prime}\right)}{4 \pi \varepsilon_{0}} \frac{\hat{r}}{r^{2}}=\int \frac{\phi^{\prime} \hat{r}}{4 \pi \varepsilon_{0} r^{2}}
\end{aligned}
$$

* show that the differential and integral field equations are equivalent

$$
\Phi_{E}=Q / \varepsilon_{0} \quad \Leftrightarrow \nabla \cdot E=\rho / \varepsilon_{0}
$$

\sim apply the divergence theorem
~ since Gauss' law holds for any volume, it is only true if the integrands are equal

$$
\begin{gathered}
\Phi_{E}=\oint_{\partial \nu} d \vec{a} \cdot \vec{E}=\int_{\nu} \nabla \cdot \vec{E} d \tau \\
Q / \varepsilon_{0}=\int_{\nu} \rho / \varepsilon_{0} d \tau
\end{gathered}
$$

* Griffith 2.6 find potential of spherical charge distribution

$$
\int \vec{E} \cdot d \vec{a}=\int \rho / \varepsilon_{0} d \tau \quad 4 \pi r^{2} E(r)=\left\{\begin{array}{cl}
q / \varepsilon_{0} & \text { if } r>r^{\prime} \\
0 & \text { if } r<r^{\prime}
\end{array}\right.
$$

if $r>r^{\prime} V(r)=\int_{\infty}^{r}-\vec{E} \cdot d t=\int_{\infty}^{r} \frac{-q \hat{r}}{4 \pi \varepsilon_{0} r^{2}} \cdot \hat{r} d r=\left.\frac{q}{4 \pi \varepsilon_{0}} \frac{+1}{r}\right|_{\infty} ^{r}=\frac{q}{4 \pi \varepsilon_{0} r}$
if $r<r^{\prime} \quad V(r)=V\left(r^{\prime}\right)+\int_{r^{\prime}}^{r}-\vec{E} \cdot \overrightarrow{d l}=V\left(r^{\prime}\right)+\int_{r^{\prime}}^{r} 0=V\left(r^{\prime}\right)$

* Griffith 2.7 integrate potential due to spherical charge distribution

$$
\begin{aligned}
& 4 \pi \varepsilon_{0} V=\int_{s p h} \frac{\sigma d a^{\prime}}{r} \\
& =\int_{u=-1}^{1} 2 \pi r^{\prime 2} \sigma \frac{d u}{r} \\
& =\frac{q}{2} \int_{u=-1}^{1} \frac{-d r}{r r^{\prime}} \\
& =\frac{q}{2 r r^{\prime}}\left[-\left|r-r^{\prime}\right|+\left|r+r^{\prime}\right|\right] \\
& =\frac{q}{2 r r^{\prime}} \begin{cases}-r+r^{\prime}+r+r^{\prime} & r>r^{\prime} \\
+r-r^{\prime}+r+r^{\prime} & r<r^{\prime}\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
d a^{\prime} & =r^{\prime 2} d \Omega^{\prime} \\
& =r^{2} \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime} \\
& =r^{\prime 2} \cdot-d u d \phi^{\prime} \\
u & =\cos \theta^{\prime} \\
-d u & =\sin \theta^{\prime} d \theta^{\prime}
\end{aligned}
$$

$$
r^{2}=r^{2}+r^{\prime 2}-2 r r^{\prime} u \Rightarrow\left(r \mp r^{\prime}\right)^{2}
$$

$$
2 r d r=-2 r r^{\prime} d u \quad u= \pm 1
$$

$$
V(r)=\frac{q}{4 \pi \varepsilon_{0}} \cdot \begin{cases}1 / r & \text { if } r>r^{\prime} \\ 1 / r^{\prime} & \text { if } r<r^{\prime}\end{cases}
$$

* Griffith 2.8 find the energy due to a spherical charge distribution
a) $W=\frac{1}{2} \int \sigma \cdot V=\frac{1}{2} q V=\frac{1}{2} \frac{q^{2}}{4 \pi \varepsilon_{0} r^{\prime}}$
b) $W=\frac{\varepsilon_{0}}{2} \int E^{2} d \tau=\frac{\varepsilon_{0}}{2} \int_{r=r}^{\infty} r^{\prime} d r d \Omega\left(\frac{q}{4 \pi \varepsilon_{0} r^{2}}\right)^{2}$

$$
=\frac{q^{2}}{2 \cdot 4 \pi \varepsilon_{0}} \int_{r^{\prime}}^{\infty} \frac{d r}{r^{2}}=\frac{q^{2}}{2 \cdot 4 \pi \varepsilon_{0} r^{\prime}}
$$

* Quiz: calculate field at origin from a hemispherical charge distribution

$$
\begin{aligned}
& \vec{E}=\int \frac{d q \hat{r}}{4 \pi \varepsilon_{0} r^{2}}=\int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{2 \pi} \frac{q}{2 \pi} d \Omega(-x \hat{x}-y \hat{y}-z \hat{z}) \\
& d q=\frac{q d \Omega}{2 \pi}=\sigma d a \\
& =\frac{-q \hat{z}}{2 \pi \cdot 4 \pi \varepsilon_{0} R^{3}} \underbrace{\int_{\theta=0}^{\pi / 2} R \cos \theta(-d \cos \theta)}_{-\left.R \frac{\cos ^{2} \theta}{2}\right|_{0} ^{\pi / 2}=-\frac{R}{2}} \underbrace{\int_{0}^{2 \pi} d \phi}=\frac{-q \hat{z}}{8 \pi \varepsilon_{0} R^{2}}
\end{aligned}
$$

Section 2.4 - Electrostatic Energy

* analogy with gravity

$\vec{F}=q \vec{E}$	$\vec{F}=m \vec{g}$
$W=q E d$ potential $=\vec{V}$	$W=m g h$ potential danger

* energy of a point charge in a potential

$$
\begin{aligned}
& W=\int_{a}^{b} \vec{F} \cdot d l=-Q \int_{a}^{b} \vec{E} \cdot d \vec{l}=Q \Delta V \\
& W(\vec{r})=Q V(\vec{r}) \quad V(\infty) \equiv 0
\end{aligned}
$$

* energy of a distribution of charge q_{1}, q_{2}, \ldots

$$
\begin{aligned}
W & =\frac{1}{4 \pi \varepsilon_{0}}\left\{q_{2} \frac{q_{1}}{r_{12}}+q_{3}\left(\frac{q_{1}}{r_{13}}+\frac{q_{2}}{r_{12}}\right)+q_{4}\left(\frac{q_{1}}{r_{14}}+\frac{q_{2}}{r_{24}}+\frac{q_{3}}{r_{34}}\right)+\ldots\right\} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{q_{i} q_{j}}{r_{i j}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{2} \sum_{\substack{i, j=1 \\
i \neq j}}^{n} \frac{q_{i} q_{j}}{r_{i j}} \\
& =\frac{1}{2} \sum_{i=1}^{n} q_{i} \sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{1}{4 \pi \varepsilon_{0}} \frac{q_{j}}{r_{i j}}=\frac{1}{2} \sum_{i=1}^{n} q_{i} V_{i}\left(\vec{r}_{i}\right) \quad W=\frac{1}{2} \sum q_{i} V_{i}
\end{aligned}
$$

* energy density stored in the electric field - integration by parts

$$
\begin{aligned}
& \nabla \cdot V \vec{E}=\nabla V \cdot \vec{E}+V \nabla \cdot E=-\vec{E} \cdot \vec{E}+V \rho / \varepsilon_{0} \\
& O=\int_{\partial \infty} d \vec{a} \cdot(V \vec{E})=\int_{\infty} \nabla \cdot V \vec{E}=\int-E^{2}+V \rho / \varepsilon_{0} d \tau
\end{aligned}
$$

* continuous version

$$
\begin{aligned}
& \sum_{i=l}^{n} q_{i} \rightarrow \int d q \\
& W=\frac{1}{2 \varepsilon_{0}} \int \rho \nabla^{-2} \rho d \tau \\
& W=\frac{1}{2} \int \rho V d \tau
\end{aligned}
$$

$$
W=\frac{\varepsilon_{0}}{2} \int E^{2} d \tau
$$

$$
\frac{d W}{d \tau}=\frac{\varepsilon_{0} E^{2}}{2}
$$

~ is the energy stored in the field, or in the force between the charges?
\sim is the field real, or just a calculational device?
~ if a tree falls in the forest...

* work does work follow the principle of superposition ~ we know that electric force, electric field, and electric potential do

$$
\vec{F}=\vec{F}_{1}+\vec{F}_{2}=q\left(\vec{E}_{1}+\vec{E}_{2}+\right)=-q \nabla\left(V_{1}+V_{2}+\ldots\right)
$$

~ energy is quadratic in the fields, not linear

$$
\begin{aligned}
W_{\text {tot }} & =\frac{\varepsilon_{0}}{2} \int E^{2} d \tau=\frac{\varepsilon_{0}}{2} \int E_{1}^{2}+E_{2}^{2}+2 \vec{E}_{1} \cdot \vec{E}_{2} d \tau \\
& =W_{1}+W_{2}+\varepsilon_{0} \int \vec{E}_{1} \cdot \vec{E}_{2} d \tau
\end{aligned}
$$

~ the cross term is the 'interaction energy' between two charge distributions (the work required to bring two systems of charge together)

Section 2.5 - Conductors

* conductor
"has abundant "free charge", which can move anywhere in the conductor
* types of conductors
i) metal: conduction band electrons, ~ $1 /$ atom
ii) electrolyte: positive \& negative ions
* electrical properties of conductors
i) electric field $=0$ inside conductor therefore $V=$ constant inside conductor
ii) electric charge distributes itself all on the boundary of the conductor
iii) electric field is perpendicular to the surface just outside the conductor

* induced charges
~ free charge will shift around charge on a conductor
~ induces opposite charge on near side of conductor to cancel out field lines inside the conductor
~ Faraday cage: external field lines are shielded inside a hollow conductor
~ field lines from charge inside a hollow conductor are
 "communicated" outside the conductor by induction (as if the charge were distributed on a solid conductor) compare: displacement currents, sec. 7.3

* electrostatic pressure
~ on the surface: $\left.\quad \vec{F} / A \equiv \vec{f}=\sigma(\vec{E})_{\text {patch }}+\vec{E}_{\text {other }}\right)=\frac{1}{2} \sigma\left(\vec{E}_{\text {inside }}+\vec{E}_{\text {outside }}\right)$
~ for a conductor: $\vec{E}_{\text {inside }}=0 \quad \vec{E}_{o u t}=\sigma / \varepsilon_{0} \quad \quad P=f=\frac{\sigma^{2}}{2 \varepsilon_{0}}=\frac{\varepsilon_{0}}{2} E^{2}$
~ note: electrostatic pressure corresponds to energy density both are part of the stress-energy tensor

Capacitance

* capacitance
~ a capacitor is a pair of conductors held at different potentials, stores charge
~ electric FLOW from one conductor to the other equals the POTENTIAL difference
~ electric FLUX from one conductor to the other is proportional to the CHARGE

$$
\begin{array}{ll}
C=Q / \Delta V=\frac{\varepsilon_{0} \Phi_{E}}{\varepsilon_{E}} \quad & Q=\int d a \sigma=\int d \vec{a} \cdot \varepsilon_{0} \vec{E}=\varepsilon_{0} \Phi_{E} \quad \text { (closed surface) } \\
\quad \Delta V=\int d \vec{l} \cdot \vec{E}=\varepsilon_{E} \quad \text { (open path) }
\end{array}
$$

~ this pattern repeats itself for many other components: resistors, inductors, reluctance (next sememster)

* work formulation

$$
\begin{aligned}
& W=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\int \frac{\varepsilon_{0}}{2} E^{2} d \tau \\
&=\frac{\varepsilon_{0}}{2} \text { flux } \cdot \text { flow } \\
& C=\frac{2 W}{V^{2}}=\frac{\varepsilon_{0}}{V^{2}} \int E^{2} d \tau=\frac{\varepsilon_{0}}{2} \text { flux. flow } \\
& \text { flow. flow }
\end{aligned}
$$

* capacitance matrix
\sim in a system of conductors, each is at a constant potential
~ the potential of each conductor is proportional to the individual charge on each of the conductors
~ proportionality expressed as a matrix coefficients of potetial $P_{i j}$ or capacitance matrix $C_{i j}$

$$
\begin{array}{lll}
V_{i}=P_{i j} & Q_{j} \\
Q_{i}=C_{i j} & V_{j}
\end{array} \quad\left(\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right)=\left(\begin{array}{lll}
P_{11} & P_{12} & P_{13} \\
P_{21} & P_{22} & P_{23} \\
P_{31} & P_{32} & P_{33}
\end{array}\right)\left(\begin{array}{l}
Q_{1} \\
Q_{2} \\
Q_{3}
\end{array}\right)
$$

$-\nabla^{2} V=\rho / \varepsilon_{0} \quad V(\vec{r}) \propto Q$

* overview: we leaved the math (Chi) and the physics (Cha) of electrostatics basically all of the concepts of Phy232, but in a new sophisticated language ~ Ch 3: Boundary Value Problems (BVP) with LaPlace's equation (NEW!)
a) method of images b) separation of variables c) multiple expansion
~ Ch 4: Dielectric Materials: free and bound Charge (more in-depth than 232)

Equations of electrodyanics:

$$
x \xrightarrow{d}(V, \vec{A}) \xrightarrow{d}(\vec{E}, \vec{B}) \xrightarrow{d} 0
$$

$\vec{F}=q(\vec{E}+\vec{V} \times \vec{B})$	Lorentz force
$\nabla \cdot \vec{J}+\partial_{t} \rho=0$	Continuity
$\nabla \cdot \vec{D}=\rho \nabla \times \vec{E}+\partial_{t} \vec{B}=\overrightarrow{0}$	Maxwell electric,
$\nabla \cdot \vec{B}=0 \quad \nabla \times \vec{H}-\partial_{t}=\vec{J}$	magnetic fields
$\vec{D}=\varepsilon \vec{E} \quad \vec{B}=\mu \vec{J} \vec{J}=\sigma \vec{E}$	Constitution
$\vec{E}=-\nabla V-\partial_{t} \vec{A} \quad \vec{B}=\nabla \times \vec{A}$	potentials
$V \rightarrow V+\partial_{t} \lambda$	$\vec{A} \rightarrow \vec{A}+\nabla \lambda$

Classical field equations - many equations, same solution:
Laplace/Poisson: $\nabla^{2} V=0 \quad \varepsilon \nabla^{2} V=\rho \quad \sim$ potentials (V, \vec{A}), dielectric ε, permeability μ

Heat equation: $\quad C \frac{\partial T}{\partial t}=k \nabla^{2} T$
Diffusion eq: $\frac{\partial u}{\partial t}=D \nabla^{2} u \quad \sim$ concentration u, diffusion D, flow $D \nabla u$
Drumhead wave: $\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}-\nabla^{2} u=f \quad \sim$ displacement u speed of sound c, force f
Schrödinger: $\quad \frac{-\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi=i \hbar \lambda \psi \sim \operatorname{prob} \operatorname{amp} \psi$, mass m, potential V, planck \hbar

* 1-dimensional Laplace equation $\nabla^{2} V=\frac{\partial v}{\partial x^{2}}=0$

$$
\frac{d V}{d x}=\int O d x=a \quad V=\int a d x=a x+b
$$

\sim charge singularity between two regions:
$\sim a_{j} b$ satisfy boundary conditions $\left(V_{0}, V_{0}^{\prime}\right)$ or $\left(V_{0}, V_{1}\right)$
\sim mean field: $V(x)=\frac{1}{2}(V(x-a)+V(x+a))$
\sim no local maxima or minima (stretches tight)

* 2-dimensional Laplace equation $\nabla^{2} V=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=0$
~ no straightforward solution (method of solution depends on the boundary conditions)
~ Partial Differential Equation (elliptic and order)
\sim chicken \& egg: cant solve $\frac{\partial^{2} V}{\partial x^{2}}$ until you know $\frac{\partial^{2} V}{\partial y^{2}}$
~ solution of a rubber sheet
~ no local extrema -- mean field: $V(\vec{r})=\frac{1}{2 \pi R} \oint V$ circle $d l$
* 3-dimensional Laplace equation
~ generalization of 2-d case
\sim same mean field theorem:

$$
V(\vec{r})=\frac{1}{4 \pi R^{2}} \oint_{\text {sphere }} V d a
$$

Boundary Conditions

* and order PDE's classified in analogy with conic sections: replacing $\frac{\partial}{\partial x}$ with x, etc a) Elliptic - "spacelike" boundary everywhere (one condition on each boundary point) eg. Laplace's eq, Poisson's eq.
b) Hyperbolic - "timelike" (2 initial conditions) and" spacelike" parts of the boundary eg. Wave equation
c) Parabolic - $1^{\text {st }}$ order in time (1 initial condition) eg. Diffusion equation, Heat equation
* Uniqueness of a BVP (boundary value problem) with Poisson's equation:
if V_{1} and V_{2} are both solutions of $\nabla^{2} V=-P / \varepsilon_{0}$ then let $U=V_{1}-V_{2} \quad \nabla^{2} U=0$ integration by parts: $\nabla \cdot(u \nabla u)=U \nabla \cdot \nabla U+\nabla u \cdot \nabla u=u \nabla^{2} u+(\nabla u)^{2}$ in region of interest: $\oint_{\partial v} d \vec{a} \cdot(U \nabla U)=\int_{V} \nabla \cdot(u \nabla u) d \tau=\int_{V} u \nabla^{2} u+(\nabla u)^{2} d \tau$ note that: $\nabla^{2} U=0$ and $(\nabla U)^{2}>0$ always
thus if $\int_{\partial V} d \vec{a} \cdot U \nabla U=\int_{\partial V} d a \underbrace{U}_{(a)} \underbrace{\frac{\partial u}{\partial n}}_{(b)}=0$ then $\int(\nabla U)^{2} d \tau=0 \Rightarrow U=0$ everywhere
a) Dirichlet boundary condition: $U=0 \quad$ - specify potential $V_{1}=V_{2}$ on boundary b) Neuman bounary condition: $\frac{\partial U}{\partial n}=0$-specify flux $\frac{\partial V_{1}}{\partial n}=\frac{\partial V_{2}}{\partial n}$ on boundary
* Continuity boundary conditions - on the interface between two materials

Flux:

$$
\vec{D} \equiv \varepsilon \vec{E}
$$

(shorthand for now)

$$
\begin{aligned}
\Phi=\oint_{\partial V} \vec{D} \cdot d \vec{a} & =\int_{V} \sigma d a=Q \\
\hat{n}^{\prime} \cdot\left(\vec{D}_{2}-\vec{D}_{1}\right) A & =\sigma \cdot A \\
\hat{n}^{\prime} \cdot\left(\vec{D}_{2}-\vec{D}_{1}\right) & =\sigma \\
-\frac{\partial V_{2}}{\partial n}+\frac{\partial V_{1}}{\partial n} & =\sigma / \varepsilon_{0}
\end{aligned}
$$

Flow:

$$
\begin{gathered}
\oint_{\partial S} \vec{E} \cdot d \vec{l}=\int_{S} \nabla \times \vec{E} \cdot d \vec{a} \\
\hat{S} \cdot\left(\vec{E}_{2}-\vec{E}_{1}\right) l=\hat{t} \cdot \nabla \times \vec{E} l w=0 \\
\hat{n} \times\left(\vec{E}_{2}-\vec{E}_{1}\right)=0 \\
V_{2}=V_{1}
\end{gathered}
$$

* the same results obtained by integrating field equations across the normal

$$
\begin{array}{cc}
\nabla \cdot \vec{D}=\rho / \varepsilon_{0} & \vec{\nabla} \times \vec{E}=\vec{K}_{e} \delta(n) \\
\int_{-}^{+} d n\left(\frac{\partial D_{n}}{\partial n}+\frac{\partial D_{s}}{\partial s}+\frac{\partial D_{t}}{\partial t}\right)=\int_{-}^{+} d n \sigma \delta(n) & \int_{-}^{+} d n\left(\hat{t} \frac{\partial E_{s}}{\partial n}-\hat{S} \frac{\partial E_{t}}{\partial n}\right)=\int_{-}^{+} d n \vec{K} \vec{e}_{e} \delta(n) \\
\int d D_{n}=\hat{n} \cdot \Delta \vec{D}=\sigma & \hat{B} \times \Delta \vec{E}=\left|\begin{array}{lll}
\hat{S} & E_{s} & \hat{n} \\
\partial_{s} & \partial_{t} & \partial_{n} \\
E_{s} & E_{t} E_{n}
\end{array}\right|
\end{array}
$$

~ opposite boundary conditions for magnetic fields: $\quad \hat{n} \cdot \Delta \vec{B}=0 \quad \hat{n} \times \Delta \vec{H}=\vec{K}$

