University of Kentucky, Physics 416G Problem Set \#4 (Rev. E) due Wednesday, 2011-10-05

1. In class are discussing five equivalent formulations of electrostatics: (I) $\boldsymbol{E}=\int d q^{\prime} \hat{\boldsymbol{\imath}} / 4 \pi \epsilon_{0} \boldsymbol{\imath}^{2}$; (II) $\Phi_{E}=Q / \epsilon_{0}, \mathcal{E}_{E}=0 ;$ (III) $\nabla \cdot \boldsymbol{E}=\rho / \epsilon_{0}, \nabla \times \boldsymbol{E}=\mathbf{0}$; (IV) $V=\int d q^{\prime} / 4 \pi \epsilon_{0} \boldsymbol{\xi} ;(\mathrm{V}) \nabla^{2} V=-\rho / \epsilon_{0}$. In this exercise we explore the connections between the first three and one new formulation. We will save the last two for the next problem set.
a) Show that (I) \Rightarrow (II) by integration of \boldsymbol{E} over an arbitrary closed surface and path.
b) Show that (I) \Leftarrow (II) by the superposing the fields obtained by applying Gauss' law on point charge elements $d q^{\prime}$ at each point \boldsymbol{r}^{\prime} in space.
c) Show that $(\mathrm{I}) \Rightarrow$ (III) by taking the divergence and curl of (I).
d) Show that (II) \Leftrightarrow (III).
e) Derive a sixth formulation (VI) by calulating $\nabla^{2} \boldsymbol{E}$. Hint: take derivatives of the two equations in (III). Thus you are showing that (III) \Rightarrow (VI). This completes the symmetry of the differential vs. integral formulations so that (I) \Leftrightarrow (VI) corresponds to (II) \Leftrightarrow (III) and (IV) \Leftrightarrow (V).
f) Identify the triangle of six formulas that allow direct calculation of each of the quantities $\{\rho, \boldsymbol{E}, V\}$ from either of the other two.
2. Show that the two fields $\boldsymbol{E}_{1}=r e^{-r^{2}} \hat{\boldsymbol{r}}$ and $\boldsymbol{E}_{2}=e^{-r^{2}}[\hat{\boldsymbol{x}}(x-y)+\hat{\boldsymbol{y}}(x+y)+\hat{\boldsymbol{z}} z]$ both have the same divergence $\rho / \epsilon_{0}=\nabla \cdot \boldsymbol{E}_{1}=\nabla \cdot \boldsymbol{E}_{2}$. Using the curl, show which field is the actual electric field of the charge distribution ρ.
3. Plot the field lines in the $x y$-plane of a charge $+Q$ at $(a, 0,0)$ and a charge $-2 Q$ at $(-a, 0,0)$. How many points in space are there where $\boldsymbol{E}=\mathbf{0}$? Calcuate their positions (if any)?
4. A flat sheet of copper carries a constant surface charge density of σ on each face. Use Gauss' law to show that the electric field intensity is σ / ϵ_{0} just outside the sheet and zero inside.
5. a) Calculate the electric field $\boldsymbol{E}(r)$ for a uniform distribution of charge Q over a spherical shell of radius r^{\prime} using Coulomb's law. Note the field point r can either be inside or outside the shell.
b) Calculate the same result using Gauss' law and compare with a).
c) For a spherically symmetric charge distribution $\rho(r)=a e^{-r / r_{0}}$, calculate the normalization constant a so that the total charge is q in all of space.
d) Using part a), calculate $\boldsymbol{E}(\boldsymbol{r})$ for the distribution in c) and compare with Gauss' law.
6. Use Gauss' law to calculate the field of two line charges parallel to the z-axis: $+\lambda$ at $(x=a, y=0)$ and $-\lambda$ at $(x=-a, y=0)$.

Also, Griffiths chapter 2, problems 4, 5, 9, 10, 18 .

