
University of Kentucky, Physics 416G
Problem Set #9 (Rev. A), due Monday, 2011-11-21

1. A spherical capacitor of radius R is made of two hemispherical conductors separated by a small
gap. The top hemisphere is held at potential +V0 and the bottom hemisphere at −V0. Evaluate
the first two non-zero terms in each case.

a) Calculate the potential everywhere inside the sphere. Note that this solution is independent
of the potential outside the sphere, because of the boundary condition V = ±V0 at r = R.

b) Calculate the potential everywhere outside the sphere, which is likewise independent of part a).

c) Calculate the surface charge on both the inside and outside of the sphere.

d) Integrate the total charge on either hemisphere to calculate the capacitance.

e) Draw the equipotentials and field lines, demonstrating the dominant features of the lowest
non-zero multipole, both inside and outside the sphere.

f) If the capacitor is filled inside with a dielectric of relative strength εr, how are the field and
surface charge modified inside? On the outside? Calculate the capacitance with the dielectric.

g) [bonus] Sum the terms of all orders to derive the exact formula for the capacitance.

2. The Clausius-Mossotti relation. Our purpose is to derive the relation between atomic po-
larizability α (defined by p = αE in a linear dielectric) and electric susceptibility χe (defined by
P = ε0χeE in the same medium).

a) The simplest relation can be derived by ignoring the contribution from individual dipoles to
E. Using the definition of P , explain why P = Np, where N is the number density of molecules
(number/volume). Show that in this case Nα = ε0χe.

b) Now correct for the fact a dipole does not feel it’s own field. Thus the definition of polarizability
in a dielectric material must be modified to p = αE0, where E0 is the macroscopic field due to
everything but p. Calculate E0 at the location of p as a function of the macroscopic field E and
susceptibility χe assuming that p is at the center of a bubble of radius R (the size of the molecule)
inside the dielectric material. Hint: see example 4.2 and problem 4.16.

c) Using the modified equation from part a), NαE0 = ε0χeE, and part b), derive the relation
Nα = ε0χe

3
3+χe

= 3ε0 εr−1
εr+2 . Show that this reduces to the näıve relation in a) as χe → 0.

d) Use part a) to compare the α and χe for elements which appear in both tables 4.1 and 4.2.
Calculate the fractional correction term 3

3+χe
derived in part c).
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3. The Langevin formula. In this problem we calculate the electric susceptibility χe of a polar
material, composed of molecules with permanent dipole moment p. While the dipole has a tendency
to align along the total field E, thermal agitations prevent perfect alignment. Ludwig Boltzman
showed that the number of atoms occupying a state i of energy Ui is proportional to the Boltzman
factor w = e−Ui/kT , where k is the Boltzman constant and T the temperature of the system. Thus
colder systems are more likely to settle into the lowest energy state because the probability of being
in an excited state is exponentially small. In our case, the state of a dipole in an electric field is
given by its rotational direction i ≡ (θ, φ) with respect to the field E = Eẑ.

a) Calculate the potential energy U(θ) of the dipole p in the field E.

b) By considering the solid angle of a ring of constant energy (ie. constant θ), show that the number
of states dn of energy between U(θ) and U(θ + dθ) is proportional to sin θdθ. The ratio g = dn

dθ is
called the degeneracy of states, the density of states, or the phase space.

c) Calculate the weighted average energy 〈U〉 ≡
∫
dnw(θ)U(θ)/

∫
dnw(θ) of a dipole p in the field

E, weighted by the Boltzman factor (distribution).

d) Calculate the weighted average 〈pz〉 of pz = p cos θ as a function of the electric field E and
temperature T , also weighted by the Boltzman distribution. Eplain why P = N〈pz〉 and use it to
show that P = Np[coth(pE/kT )− (kT/pE)]. Graph this as a function of E.

e) In the limit where pE � kT , determine the linear relationship between E and P to determine
the susceptibility χe. Calculate χe for liquid and vapor water, using p = 3.8× 10−9 e cm.

f) [bonus] As in #2, correct for the fact a dipole does not feel it’s own field. How much does χe
improve for liquid water?

Also Griffiths chapter 4, problems 1, 4, 5, 6, 7, 8, 9, 10, 12, 13, and 14.
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