University of Kentucky, Physics 416G
 Problem Set \#10 (Rev. C), due Wednesday, 2011-12-07

1. An infinite cylindrical rod of radius R centered in the $x y$-plane and extending along the z-axis has a uniform polarization $\boldsymbol{P}=P \hat{\boldsymbol{x}}$.
a) Calculate the bound surface charge density σ_{b}.
b) Calculate \boldsymbol{E}_{b} (due to the bound charge) inside and outside the cylinder as a function of \boldsymbol{P}.
c) Suppose $\boldsymbol{P}=\chi_{e} \epsilon_{0} \boldsymbol{E}$, where \boldsymbol{E} is the total electric field inside the rod, placed in an external electric field $\boldsymbol{E}_{0}=E_{0} \hat{\boldsymbol{x}}$. Calculate the values of $\boldsymbol{E}, \boldsymbol{P}$, and \boldsymbol{D} inside and outside of the rod.
d) Show that $\epsilon_{0} E_{2 n}-\epsilon_{0} E_{1 n}=P_{n}$ and that $D_{2 n}-D_{1 n}=0$ for your solution.
e) Solve the same problem (part c) as a boundary value problem with dielectric constants and $\sigma_{f}=0$, and show that the two answers are consistent.
2. In a capacitive touch-screen, your dielectric finger modifies the capacitance between two strips of the transparent conductor indium tin oxide (ITO). We will model a single cell (from the middle of one strip to the middle of the next) of this display as an semi-infinite rectangle extending upward from the strips. Use the boundary conditions $\partial V / \partial x=0$ on the sides at $x= \pm a$ to ensure the correct periodic symmetry.

a) Solve the boundary value problem for the potential without a finger $\left(\epsilon_{r}^{1}=\epsilon_{r}^{2}=1\right)$. Note that in this case there is no discontinuity at the glass and the problem can be solved with a single region extending from $0<y<\infty$. Calculate the first two nonzero terms of the Fourier expansion.
b) Solve for the potential when a finger is present. Assume the glass thickness is d, and your finger of pure water $\left(\epsilon_{r}^{2} \approx 80\right)$ fills the whole region beyond the glass.
c) Plot the equipotentials and field lines in the region with and without your finger.
d) Calculate the capacitance/length with and without your finger, as a function of d / a. Don't forget fields on both the top and bottom of the strip. What glass thickness do you recommend?
e) If the voltage on each wire is $\pm V= \pm 2 V$, what difference in charge must the device be able to measure? $(d=a=3 \mathrm{~mm}, 1 \mathrm{~cm}$ long) If the strips were joined into an $L R C$ circuit, what frequency shift $\Delta \omega$ would the device need to discriminate?

Also Griffiths chapter 4 , problems $16,18,20,21,22,24,28,29,30,32,33$, and 34.
3. [bonus] a) Calculate the electric potential due to a point multipole $Q_{\text {int }}^{(\ell)}$ (see HW $8 \# 1$) placed at the origin, embedded in a material of dielectric constant ϵ_{r}. Hint: put the multipole inside a spherical bubble of radius δ, solve for the external potential, and take the limit as $\delta \rightarrow 0$. This is similar to the proof of the Clausius-Mossotti relation in HW $9 \# 2$. Note: the solution to the problem depends on the shape of the for the bubble the multipole is placed in, even in the limit as $\delta \rightarrow 0$.
b) Now let the point point multipole $Q_{\text {int }}^{(\ell)}$ be embedded at the center of a sphere of radius R and dielectric constant ϵ_{r}. Calculate the electric potential inside and outside the sphere. Hint: use the result from part a) to form the boundary condition as $r \rightarrow 0$.
4. [bonus] Thermal conductivity K defined by $\boldsymbol{q}=-K \nabla T$, is similar to electrical conductivity σ, but for the flow of heat $d Q / d t=\boldsymbol{q} \cdot \boldsymbol{d a}$ across a thermal gradient $-\nabla T$, instead of charge $I=d q / d t=$ $\boldsymbol{J} \cdot \boldsymbol{d} \boldsymbol{a}$ across and potential gradient $\boldsymbol{E}=-\nabla V$ in the electrical conduction equation $\boldsymbol{J}=-\sigma \nabla V$. Note the difference between the symbols: Q (heat energy), \boldsymbol{q} (heat flux), and q (charge).
a) Show that $K=\frac{1}{2} k N v_{\text {rms }} \lambda$, assuming classical diffusion, where k is Boltzman's constant, N is the electron density, and λ the mean free path of electrons.
b) Show that the relation between electrical and thermal conductivity is $K / \sigma T=3 k^{2} / 2 e^{2}$.
5. [bonus] a) Show that the power density in a resistor is $d P / d l=I^{2} \rho / A$, where ρ is the resistivity and A the cross sectional area of the resistor.
b) Show the similar result for a surface resistor: $d P / d a=K^{2} \rho / d$ where d is the thickness of the surface resistor, and $d P / d \tau=J^{2} \rho$ for bulk resistance.

