List of Concepts Covered.

*	Historical Underpinnings: - Pland's law, Probdectic, Compton Effects, Bohr model de Broglie wowlength, Davison-Germer expt. E=tw, L=tn, p=tr - what basic principle did each contribute to Q.M.? - calculations of each effect
*	probability distribution P(x) & camplibules 4(x) - calculate $\langle f(x) \rangle$, $\sigma_x^2 = \langle x^2 \rangle - \langle x \rangle^2$ - Born interpretation of wave function how is it similarly / different than classical P(x)? - quantum measurement: what values? how do they after the state?
*	dispersion relation and wave puckets - understand relations between E.p. w.k E w quantization & dispersion - be able to calculate vz, vp from a dispersion curve. - construct wave packets as superposition w (wick) of plane waves with amplitude A(k) (Fourier transforms) - describe major features & effects on packets: fundainantal frequency, carrier frequency, band width. - explain wave-particle duality (complementarity) and Heisenberg Uncertainly Principle in terms of packets - compare/contrast classical waves/particles wy quantum.

* Schrodinger equation -explain how TDSE evolves the state in time and how the TISE is used to solve the TDSE.

- -show how TDSE is a generalization of old quantum themy. Planck's law, de Broglie wavelength, dispersion relation.
- solve the TISE for: free particle, infinite square well, SHO. calculate amplitudes of initial wavefundion ? time dependence matrix elements for the SHO.

- what is the role of boundary conditions?