University of Kentucky, Physics 420 Homework #2, Rev. A, due Monday, 2015-09-21

1. Calculate and plot the **Fourier transform** $\psi(x) = \int_{-\infty}^{\infty} dk A(k) e^{ikx}$ of a square frequency distribution $A(k) = A_0$ if $k_1 < k < k_2$ and 0 otherwise. Calculate the uncertainty Δk in frequency. Show that the Heisenberg uncertainty principle holds for this wavefunction, but very badly!

2. Surface waves—According to the Airy theory of gravity waves, the dispersion relation for water waves is $\omega^2 = gk \tanh(kh)$, where h is the water depth and g is acceleration due to gravity. Calculate the phase velocity $v_{\phi} = \omega/k$, group velocity $v_g = d\omega/dk$, and rate of dispersion $\beta = d^2\omega/dk^2$ for water wave packet centered about frequency k_0 in the shallow water (kh << 1) and deep water (kh >> 1) limits. Do individual crests move forward or backward within the wave packet? What if anything is the significance of negative dispersion β ? Calculate the same coefficients at short wavelengths, where surface tension displaces gravity as the restoring force. Now the dispersion relation becomes $\omega = \sqrt{k^3 \gamma/\rho}$, where $\gamma \approx 73$ mN/m and $\rho \approx 1$ g/cm³ are the suface tension and density of water, respectively. Do surface ripples go forward or backward in their wave packet?