University of Kentucky, Physics 420 Homework #3, Rev. A, due Monday, 2015-09-28

1. Given the **non-orthogonal basis** $\vec{b}_1 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ and $\vec{b}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$,

a) Write the equation $\vec{v} = \vec{b}_1 v^1 + \vec{b}_2 v^2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ in matrix form and use it to solve for the components $\begin{pmatrix} v^1 \\ v^2 \end{pmatrix}$ of \vec{v} in the basis $(\vec{b}_1 \quad \vec{b}_2)$.

b) Calculate the dual vectors $\tilde{\boldsymbol{b}}^1 = (b_x^1 \quad b_y^1)$ and $\tilde{\boldsymbol{b}}^2 = (b_x^2 \quad b_y^2)$ so that $\tilde{\boldsymbol{b}}^i(\vec{\boldsymbol{b}}_j) = \delta^i{}_j$, ie. $\tilde{\boldsymbol{b}}^1(\vec{\boldsymbol{b}}_1) = 1 \qquad \tilde{\boldsymbol{b}}^1(\vec{\boldsymbol{b}}_2) = 0$ $\tilde{\boldsymbol{b}}^2(\vec{\boldsymbol{b}}_1) = 0 \qquad \tilde{\boldsymbol{b}}^2(\vec{\boldsymbol{b}}_2) = 1.$

What is the relation between the basis and cobasis matrices $\vec{B} = (\vec{b}_1 \ \vec{b}_2)$ and $\tilde{B} = \begin{pmatrix} \vec{b}_1 \\ \tilde{b}^2 \end{pmatrix}$? Note the appearance of these matrices in part a). Use these matrices to resolve the components in \vec{B} of an arbitrary vector $\vec{v} = \begin{pmatrix} v_x \\ v_y \end{pmatrix}$ or the components in \tilde{B} of an arbitrary dual $\tilde{w} = (w_1 \ w_2)$.

c) Calculate the two projector (matrices) $P_i = \vec{b}_i \tilde{b}^i$ and show that they project \vec{v} onto each of the basis vectors \vec{b}_i . Add them to show that $\sum_{i=1}^2 P_i = I$ (closure). How does that follow from part b)?

d) Calculate the metric $G = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}$ so that $\vec{x} \cdot \vec{y} = \begin{pmatrix} x^1 & x^2 \end{pmatrix} \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} y^1 \\ y^2 \end{pmatrix}$. Verify this formula on the components of $\vec{v} \cdot \vec{v}$ in both the normal and \vec{B} basis. Note that $g_{ij} = \vec{b}_i \cdot \vec{b}_j$.

e) [bonus] In this non-orthonormal basis, write the formula for the adjoint $\tilde{v} = (v_1 v_2)$ of \vec{v} , defined by $\tilde{v}(\vec{x}) = \vec{v} \cdot \vec{x}$ for any other vector \vec{x} .

2. Circular polarized photons travelling in the z-direction may be described by the wave function $\Psi(\vec{r}) = \hat{x}e^{ikz-i\omega t} + i\hat{y}e^{ikz-i\omega t}$.

a) What is physical difference between the x and y components? Plot the real part of this wave.

b) Use the Gram-Schmidt method to normalize $\hat{e}_1 = \begin{pmatrix} 1 \\ i \end{pmatrix}$ and complete the basis with a second orthonormal vector \hat{e}_2 . Note that in this context our scalar field is \mathbb{C}

c) Calculate the adjoints \hat{e}_1^{\dagger} , \hat{e}_2^{\dagger} , and the projectors $P_1 = \hat{e}_1 \hat{e}_1^{\dagger}$ and $P_2 = \hat{e}_2 \hat{e}_2^{\dagger}$. Verify by direct calculation the *orthonormality* $\hat{e}_i^{\dagger} \hat{e}_j = \delta_{ij}$ and *closure* $\sum_i \hat{e}_i \hat{e}_i^{\dagger} = I$ relations.

d) Use $\vec{x} = I\vec{x} = P_1\vec{x} + P_2\vec{x} = \hat{e}_1\hat{e}_1^{\dagger}\vec{x} + \hat{e}_2\hat{e}_2^{\dagger}\vec{x} = \hat{e}_1x_1 + \hat{e}_2x_2$ to find the components x_1 and x_2 of $\vec{x} = (11)$ and verify that $\vec{x} = \hat{e}_1x_1 + \hat{e}_2x_2$.

3. Adjoint Given $\boldsymbol{a} = \begin{pmatrix} 2i \\ 3 \end{pmatrix}$, $\boldsymbol{b} = \begin{pmatrix} 1 \\ i \end{pmatrix}$, and $\boldsymbol{M} = \begin{pmatrix} 2 & i \\ -i1 \end{pmatrix}$, show by direct calculation that $\boldsymbol{a}^{\dagger}\boldsymbol{b} = (\boldsymbol{b}^{\dagger}\boldsymbol{a})^*$, $(\boldsymbol{M}\boldsymbol{a})^{\dagger} = \boldsymbol{a}^{\dagger}\boldsymbol{M}^{\dagger}$, $(\boldsymbol{a}^{\dagger}\boldsymbol{M}\boldsymbol{b})^* = \boldsymbol{b}^{\dagger}\boldsymbol{M}^{\dagger}\boldsymbol{a}$, and $\boldsymbol{a}^{\dagger}\boldsymbol{M} = (\boldsymbol{M}^{\dagger}\boldsymbol{a})^{\dagger}$. Note the last formula implies that \boldsymbol{M} multiplies to the left in its role as adjoint.