University of Kentucky, Physics 420 Homework #4, Rev. A, due Monday, 2015-10-05

1. The complex plane $\{z = (x, y)\}$ is a vector space of *real* and *imaginary* components of $z = x + iy \in \mathbb{C}$ with the additional structure of multiplication, analogous to the *general linear group* GL(n) of operators. We explore this analogy using a generalization of the exponential map.

a) Which two complex numbers form a basis the the above components of z?

b) Show that the dot and cross product of two points $z_1 = (x_1, y_1)$ and $z_2 = (x_2, y_2)$ are the real and imaginary parts of the complex product $z_1^* z_2 = z_1 \cdot z_2 + i(z_1 \times z_2)_z$, where the $z^* = x - iy$ is the *complex conjugate* of z. Identify the symmetric and antisymmetric parts. Compare the complex $|z|^2 = z^* z = z \cdot z$ and vector $|\vec{v}|^2 = \vec{v} \cdot \vec{v}$ square magnitudes. Note that the cross product is not closed over the xy-plane: only the z-component is nontrivial!

c) Show graphically that the operator "multiply by i" rotates a point $z 90^{\circ}$ CCW about the origin.

d) Show graphically that the operator $1 + i d\phi : z \mapsto z + iz d\phi$ preserves the magnitude of z (assuming $d\phi^2 = 0$), but rotates it CCW by the infinitesimal angle $d\phi$.

e) Obtain a finite rotation by an infinite composition of rotations by $d\phi$, as follows: formally integrate the equation $dz = iz \, d\phi$ with the initial condition $z|_{\phi=0} = z_0$ to obtain the rotation formula $z(\phi) = R_{\phi}z_0$, with $R_{\phi} = e^{i\phi}$. Use this property to justify the identity $e^x = \lim_{n \to \infty} (1 + \frac{x}{n})^n$.

f) Separate the Taylor expansion of $e^{i\phi}$ into x+iy to prove Euler's formula, $e^{i\phi} = \cos \phi + i \sin \phi$.

g) Show that complex multiplication by i is equivalent to the vector operator $\hat{z} \times .$

h) Determine the matrix representation M_z of the operator $\hat{\boldsymbol{z}} \times$, such that $M_z \boldsymbol{r} = \hat{\boldsymbol{z}} \times \boldsymbol{\vec{r}}$. Do the same for M_x and M_y . Show that $\vec{\boldsymbol{v}} \times = \vec{\boldsymbol{v}} \cdot \boldsymbol{M} = v_x M_x + v_y M_y + v_z M_z$ for any vector $\vec{\boldsymbol{v}}$, and derive the matrix representation of $\vec{\boldsymbol{v}} \times$. Note that each of these matrices is antisymmetric, and the stack of three matrices \boldsymbol{M} (cross product tensor) is completely antisymmetric, with components ε_{ijk} .

i) Calculate all nine combinations M_iM_j . Show that (M_x, M_y, M_z) have the same properties of Hamilton's quaternions (i, j, k), which extend the rotational properties of complex numbers to 3 dimensions: $i^2 = j^2 = k^2 = ijk = -1$. Do these matrices *commute*?

j) Using the same method as above, show that the matrix for a vector rotation of angle ϕ CCW in the *xy*-plane can be written $R_{\phi} = e^{M_z \phi} = I \cos \phi + M_z \sin \phi = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$, neglecting trivial *z*-components. The *exponential* of matrix M_z is defined in term of its Taylor expansion. In general, the matrix for a CCW rotation of angle $v = |\vec{v}|$ about \hat{v} can be written $R_v = I \cos v + M \cdot \hat{v} \sin v + \hat{v} \hat{v}^T (1 - \cos v)$. The third term handles the non-rotating component parallel to \hat{v} .

k) Calculate the eigenvalues and eigenvectors of $M_z = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ to show that $M_z = VWV^{\dagger} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}$ and $e^{M_z \phi} = V e^{W \phi} V^{\dagger} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} \begin{pmatrix} e^{-i\phi} & 0 \\ 0 & e^{i\phi} \end{pmatrix} \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}$. Multiply this out to verify part j). Thus real Hermitian matrices have real eigenvalues while antiHermitian matrices have Tr=0 and imaginary eigenvalues. The exponential of a Hermitian matrix remains Hermitian, while the exponential of an antiHermitian matrix is an unitary rotation with Det=1 and unit modulus eigenvalues. Amazingly, the Hermitian/antiHermitian decomposition of matrices is analogous to the real/imaginary decomposition of complex numbers.