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Introduction: 
In Quantum Mechanics, wave functions offer statistical information about possible results, not 
the exact outcome of an experiment. Two wave functions of interest are the position wave 
function and the momentum wave function; these wave functions represent the components of a 
state vector in the position basis and the momentum basis, respectively. These two can be related 
through the Fourier Transform and the Inverse Fourier Transform. This demonstration 
application will allow the users to define their own momentum wave function and use the inverse 
Fourier transformation to find the position wave function. If the Fourier transform were to be 
used on the resulting wave function, the result would then be the original momentum wave 
function. Both wave functions visually show the wave packets in momentum and position space. 
The momentum wave packet is a Gaussian while the corresponding position wave packet is a 
Gaussian envelope which contains an internal oscillatory wave. The two wave packets are related 
by the uncertainty principle, which states that the more defined (i.e. more localized) the wave 
function is in one basis, the less defined the corresponding wave function will be in the other 
basis. The application will also create an interactive 3-dimensional model that relates the two 
wave functions through the inverse Fourier transformation, or more specifically, by visually 
decomposing a Gaussian wave packet (in momentum space) into a specified number of 
components waves (in position space). Using this application will give the user a stronger 
knowledge of the relationship between the Fourier transform, inverse Fourier transform, and the 
relationship between wave packets in momentum space and position space as determined by the 
Uncertainty Principle.  
 
Concept: 
Wavelength and Position 
In Griffith’s Introduction to Quantum Mechanics, Griffith brings up the following scenario: one 
steadily oscillates a long rope and generates a standing wave, proceeding to ask the odd question, 
“Where exactly is the wave?” This question is odd since the wave is not exactly anywhere; it is 
spread out over the length of the rope. A more reasonable question would be, “What is its 
wavelength?” However, if one were to give the same rope a sudden jerk to create a single, 
narrow bump travelling down the rope, then the situation is reversed: one could answer for the 
location of the wave, but it would be difficult to interpret what a wavelength would be. This is a 
very basic model of the uncertainty relationship; one is able to achieve a well-defined 
wavelength (localized in momentum space) or a well-defined position (localized in position 
space) but not both at the same time. 



Wave Packet 
The position wave function is a superposition of potentially infinite sinusoidal waves. The 
amplitude of a wave with a certain wave number 𝑘𝑘0 is given by the momentum wave function 
evaluated at the corresponding point ℏ𝑘𝑘0 in momentum space. The position wave function will 
contain internal “ripples” whose peaks and troughs form the shape of an external Gaussian 
“envelope” or “group.” This is known as the wave packet. By using the 3-dimensional model 
generated from the application, this relationship can be seen visually. 
 
Uncertainty Principle 
The uncertainty of measurements is related to the variance (𝜎𝜎2) of the distribution. The general 
uncertainty principle is defined as 
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where �̂�𝐴 and 𝐵𝐵�  are the A and B hermitian operators respectively. The term �𝐴𝐴,� 𝐵𝐵�� = �̂�𝐴𝐵𝐵� − 𝐵𝐵��̂�𝐴 is 
the commutator of the two hermitian operators. When two operators commute, the commutator is 
zero. Mathematically, this allows the product of the two variances to equal zero. However, when 
the commutator is not zero, the two operators are incompatible observables. The uncertainty 
principle is the result of the statistical interpretation of quantum mechanics.  
 
The demonstration application focuses on two vector spaces: the momentum space and the 
position space. By using the momentum and position operators, one is able to reproduce the 
Heisenberg uncertainty principle that states that the more defined (i.e. localized) the momentum 
or position wave function is in its respective basis, the less defined (i.e. more spread out) the 
corresponding wave function of the other basis. By the canonical commutation relation, [𝑥𝑥�, �̂�𝑝] =
𝑖𝑖ℏ, where 𝑥𝑥� is the position operator and �̂�𝑝 is the momentum operator and ℏ is the reduced 
Planck’s constant. 
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Heisenberg Uncertainty Principle 

where 𝜎𝜎 is the standard deviation, defined as the uncertainty in the distributions. 
 
 
 
 
 
 
 
 



Fourier Transform and Inverse Fourier Transform 
The inverse Fourier transform can be operated on the momentum wave function to derive the 
position wave function:  
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where Ψ(𝑥𝑥, 𝑡𝑡) is the position wave function and the 𝜙𝜙(𝑘𝑘) is the momentum wave function. 
 
The Fourier transform can be used on the momentum wave function to derive the momentum 
wave function:  
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Plancherel’s Theorem states that the inverse Fourier transform of a Fourier transform is the 
starting function. Therefore, if either the momentum or position wave function is known, then 
the other can be determined using the inverse Fourier transform and the Fourier transform, 
respectively. Then, by using Fourier transform and the inverse Fourier transform, respectively, 
the original wave function can be recovered. Through the use of these transformations, one can 
freely change from momentum space to position space, or vice versa. 
  



Demonstration Application of the Fourier Analysis of the Wave Packet and the Uncertainty 
Relation 
 
The demonstration application helps the user understand the concept of the Fourier transform 
and inverse Fourier transform. After the momentum wave function is defined, the application 
will produce the position wave function but also create a 3-dimensional model that combines the 
momentum and the individual sinusoidal waves that are superimposed to create the wave 
function through the relationship of the Fourier transform.  

 
By defining a Gaussian momentum wave function (see Figure 1), one can use the demonstration 
application to find the position wave function (see Figure 2) that is enveloped by a Gaussian 
wave packet. This is performed by taking the defined momentum wave function and performing 
the inverse Fourier transformation.  
 

 
Figure 1: The defined momentum wave function 

 

 
Figure 2: Position wave packet resulting from the inverse Fourier 
transform of the defined momentum wave function. It can be seen that 
the wave function is "grouped" together to make the wave packet. 



The uncertainty of the momentum wave function is defined by the user and the uncertainty of the 
position wave function will be calculated by the application. It is then shown that the product of 
the uncertainty of the momentum and position wave function is greater than or equal to ℏ 2⁄  (i.e. 
Heisenberg uncertainty principle will be conserved). 
 
In fact, for any Gaussian wave packet (i.e. any wave functions produced with this application), 
the Uncertainty Principle holds to equality: 𝜎𝜎𝑥𝑥𝜎𝜎𝑝𝑝 = ℏ 2⁄ . However, in the images above, the 
product of the uncertainties shown is much larger than ℏ 2⁄ ; this occurs because of the use of a 
small finite number of component waves in the application simulation (this in turn allows for the 
reappearance of identical wave packets at regular intervals in x-space, not seen in the image). In 
order to increase the accuracy of the uncertainty product, larger numbers of component wave are 
used (see images below); in reality, the Fourier transformation uses an infinite number of 
infinitely-densely-spaced component waves, which can only be approximated in the simulation. 
 
The application will produce a 3-D model that relate the momentum and position space through 
the Fourier transform. The model will show the relationship of the momentum wave function and 
the individual sinusoidal waves that forms the position wave function when superimposed 
(Figure 3, 4, 5). 
 



 
Figure 3: The 3-D model that relates the momentum 
space and position space through the Fourier transform 



 
Figure 4: The momentum wave function is made up of the 
amplitudes of the individual waves that are superimposed to create 
the wave function 

 
Figure 5: The individual waves that are superimposed to create 
the position wave function. 



Examples of the Demonstration Application 
Three examples will be shown with the application. Each example will minimize the 
uncertainties while still conserving the uncertainty principle. 
 

1. Momentum uncertainty and position uncertainty are the same: 

 
Figure 6: A Gaussian momentum wave function is defined 
and the application will perform the inverse Fourier  

 
Figure 7: Many individual sinusoidal position waves 

were used in this 3-D model. The amount of waves can 
be changed in this application. 



 
2. Momentum uncertainty is large and position uncertainty is small: 

 
By giving the momentum wave function a large uncertainty (i.e. make the wave spread 
out), the position wave packet is able to have a small uncertainty (i.e. localized). 
 

 
Figure 8: The momentum wave was given a large uncertainty which 
resulted in a position wave function with a small uncertainty. The 
Heisenberg uncertainty principle is still conserved. 



3. Momentum uncertainty is small and position uncertainty is large: 
 

By giving the momentum wave function a small uncertainty (i.e. localized), the position 
wave packet must have a large uncertainty (i.e. spread out). 

 

 
Figure 9:The momentum wave was given a small uncertainty (to simulate 
localization) which resulted in a position wave function with a large 
uncertainty. The Heisenberg uncertainty principle is still conserved. 

 
 
 
 
 
 
 
 

 
 

 
 



How to use the application 
 
When one starts the program, it will give the user an introduction, the current distribution, and a 
list of its functions (Figure 10). 
 

Hello there! Welcome to 
Fourier Transformations & 
Understanding Uncertainty 
 
 
Your current transformation is: 
 
Gaussian k-distribution centered at 10 with sigma 1 
showing 11 component waves, 5 < k < 15 & -5 < x < 5  
 
To view your current transformation, just type "go". 
To adjust the Gaussian center, type "cen=#" for center at 
#. 
To adjust the Gaussian sigma, type "sig=#" for a sigma of 
#. 
To adjust the number of wave components shown, type 
"num=#". 
To adjust k scale from a to b, type "klo=a" and "khi=b". 
To adjust x scale from c to d, type "xlo=c" and "xhi=d". 
To view probability distributions (|f|^2), type "sqd=1". 
Separate multiple commands with a comma. 
If you wanna quit, just say "bye". 

>>> 

 
 
 
 
 
 
 
 
 
 
 

Figure 10: The program’s introductory instructions 



The momentum wave function can be determined by the functions “cen=#” and “sig=#”. To 
determine range of k values to be viewed, use the functions “klo=#”, and “khi=#”. 
 
For the position wave function, the range of x values to be viewed is determined with the 
functions “xlo=#” and “xhi=#”. To control the number of individual sinusoidal waves that are 
superimposed to form the wave function, use the function “num=#”.  
 
To view the wave functions and the 3-D model of the Fourier Transform, one just needs to type 
“go”.  
 
Note: One can view the actual probability distributions (instead of just the amplitudes) with the 
"sqd=1" command, as shown. 
To exit the image window, just close the window. Then a new transformation can be defined. 
When the user wants to quick the program, use the “bye” command. 
 
Example 
A Gaussian momentum wave function with a peak centered at the k value 15, a k value range 
from 0 to 30, with 100 decomposed sinusoidal waves use the command shown on Figure 11. 
 
>>> num=100, cen=15, klo=0, khi=30, go 

 
 
 
 
 
 
 
 
 

Figure 11: The example command 


