Propagation of unbound wave function, the free particle

Since V =0 for a free particle it's Schrodinger equation is:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2}=E\psi,$$

A free particle can carry any positive energy tracking on the standard time dependent exp (-iEt/h)

$$\Psi(x,t) = Ae^{ik(x-\frac{\hbar k}{2m}t)} + Be^{-ik(x+\frac{\hbar k}{2m}t)}.$$

The wave travels in the +-x direction at v = hk/2m, where x +- vt = constant.

The shape of a free wave does not change as it travels.

Eventually stationary states of the FP are propagating waves where their wave length $\Delta = 2\pi/k$ and according to deBroglie p = hk. The v = hk/2m. which is ½ the classical velocity v = (2E/m) to ½power.

The quantum mechanics wave function of a free particle travels at ½ the speed of the particle it represents.

The speed of the packet is group velocity = dw/dk. The phase velocity is w/k. The free wave function can not be normalized.

There is no such thing as a free particle with a define energy because separable solutions do not represent physically realizable states. Therefore the continuous variable k is use instead of the discrete index n.

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \phi(k) e^{i(kx - \frac{\hbar k^2}{2m}t)} dk.$$

This equation carries a range of energies and speeds called a wave packet, normalized over $\phi(k)$.

The solution for the free particle is the above equation where:

$$\phi(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \Psi(x,0) e^{-ikx} dx.$$

♦(k) acts like Cn.

The Scattering Matrix of an unbound particle

The solution to the left is:

$$\psi(x) = Ae^{ikx} + Be^{-ikx}$$
, where $k \equiv \frac{\sqrt{2mE}}{\hbar}$.

The solution to the right is:

$$\psi(x) = Fe^{ikx} + Ge^{-ikx}.$$

From this you can get the scattering matrix:

$$\begin{pmatrix} B \\ F \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} A \\ G \end{pmatrix}.$$

Where B and F are the outgoing amplitudes and A and G are the incoming amplitudes.

Scattering matrix for a free particle where V(x) = 0 is:

$$S = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

If V(x) is not 0

$$S = \begin{cases} 2ir & 1 + 2ir \\ 1 + 2ir & 2ir*(1 + 2it/1 - 2i*t) \end{cases}$$

For a optical setup