University of Kentucky, Physics 520 Homework #8, Rev. A, due Friday, 2016-10-28

- **0.** Griffiths [2ed] Ch. 2 #52, #53.
- 1. The step potential $V(x) = V_0\theta(x) = \{V_0 \text{ if } x > 0, \text{ or } 0 \text{ if } x < 0\}$ is the quantum mechanical analog of a wave on a string crossing over the junction of two strings of characteristic impedance Z_1 and Z_2 connected at x = 0.
 - a) Calculate the transfer matrix for this potential.
 - b) Calculate the scattering matrix from the transfer matrix of part a).
- c) Calculate the forward (coming in from the left) and backward (coming in from the right) probabilities of reflection and transmission for a particle of energy E > 0 using the elements of the scattering matrix of part b). Hint: the forward transmission probability must take into account the difference of incoming and outgoing velocities:

$$T_{\ell} = \frac{j_F}{j_A}\Big|_{G=0} = \frac{k_2|F|^2}{k_1|A|^2}\Big|_{G=0} = \frac{k_2}{k_1}|S_{21}|^2.$$

- d) Show that the forward reflection coefficient is R = 1 if $E < V_0$, similar to total internal reflection of a light wave in a fibre optic cable.
- e) [bonus] What are the quantum mechanical analogs of the velocity v and impedance Z of a classical wave medium?