Friday, October 16, 2015 07:16

- * This is the simplest problem to solve in Quantum Mechanics: a one-dimensional free particle except for an infinite repulsive force at x=0 (to the right) and at x=a (to the left). - classically, it bounces back and forth between the 2 walls. - in Q.M., we solve for the "modes" (standing wave) with fixed ends. * this problem will be used to illustrate the steps of QLM. solutions: a) solve the 2nd order TISE (ODE) in each smooth region of the potential to get a general solution $\bigvee(\kappa)$ P2(4) $\Psi(x) = A f_1(x, E) + B f_2(x, E)$ 12(x) There are 2 unknown constants in each region, in addition to the constant E, which is \geq χ the same in each region a b) "Sew" the solutions together using: i) internal boundary conditions between neighbouring regions. $\Delta \Psi = 0$ and $\Delta \Psi' = 0$ (from integrating the TISE accross the boundary) ii) external boundary conditions (at the outer edges) $\psi \rightarrow 0$ at $x \rightarrow \infty$ and $x \rightarrow -\infty$ These boundary conditions can be solved for all but one of the unknown coefficients: A,B, GD, ...; E. The final unknown is NOT E, but is the overall normalization. In fact, this procedure will yield a whole "spectrum" of values of En with wavefunctions 4, (5c), where the index "n" indicates the number of canti] nodes.
 - Fall 2017 Page 1

values of En with wavefunctions
$$\Psi_{n}(x)$$
,
where the index 'n' indicates the number of contilinates.
These are the standing waves of the TISE.
c) Normalize the wave durctions: $(\Psi_{n}|\Psi_{n}) = \int \Psi_{n}^{k}(x) \Psi_{n}(x) = 1$
to determine the retraining constant. These functions
 $\Psi_{n}(x) = (\Psi_{n}^{k}(x) + n - x)$ form d_{n} "orthonorynal basis" of the
space of all possible wave durctions using the inner product
 $\langle \Psi_{n}|\Psi_{n}\rangle = \int \Psi_{n}^{k}(x) \Psi_{n}(x) = \delta_{nn} = \begin{cases} 0 \text{ if } m=n \\ 0 \text{ if } m=n \end{cases}$
(This is guaranteed by the "Sturn-Liouville theorem")
d) The general solution to the TDSE, has the form
 $\Psi(x) = \sum_{n=1}^{\infty} c_{n} \Psi_{n}(x) e^{-\frac{1}{2}k_{n}}$
(The "completeness" of $\Psi_{n}(x)$ is also gearanteed by Sturn Liouville)
Use orthogonality of W_{n} is determine on from the initial state $P_{0}(x)$
 $\langle \Psi_{n}|\Psi_{n}\rangle = \sum_{n=1}^{\infty} \int \Psi_{n}(x) e^{-\frac{1}{2}k_{n}} = \sum_{n=1}^{\infty} c_{n} (\Psi_{n}|\Psi_{n}\rangle = c_{n}$
e) Thus, the general solution to the TDSE, satisfying
initial conditions $\Psi(x_{n})$ and boundary conditions $\Psi(x_{n}) = 0$ is:
 $\Psi(x_{n}) = \sum_{n=1}^{\infty} \int \Psi_{n}(x) \Phi_{n}(x) e^{-\frac{1}{2}k_{n}} = \sum_{n=1}^{\infty} (\Psi_{n}) e^{-\frac{1}{2}k_{n}} (\Psi_{n}) = \frac{1}{2}a_{n}(y) e^{-\frac{1}{2}k_{n}} = \frac{1}{2}a_{n$

b) There is only one region!
If
$$x < 0$$
 or $x > a$, $\Psi(x) = e^{i \phi x} \Rightarrow 0$.
 $\Psi(o) = 0 = A_{SA}(o) + B_{COS}(o) \Rightarrow B = 0$
 $\Psi(a) = 0 \Rightarrow A_{Sin}(ka) = 0 \Rightarrow ka = n\pi n = 1,2,3,...$
Huus $\Psi(x) = A_{Sin}(kax)$ on $0 < x < a$
where $k_n = \frac{1}{4\pi} \Rightarrow \left[\frac{k}{kn} = \frac{k^2 x^2}{8ma^3} \right]$
c) $\langle \Psi_n | \Psi_n \rangle = \int dx (A|^2 sin(kax) sin(kax))$
 $= |A|^2 \int_0^a dx \frac{1}{2} \left[\cos(k_n \cdot k_n) x - \cos(k_n \cdot k_n) x \right]$
 $= \frac{1}{4}A|^2 \left[\frac{\sin(k_n \cdot k_n) x}{k_n \cdot k_n} - \frac{\sin(k_n \cdot k_n) x}{k_n \cdot k_n} \right]_0^a$ but $k_n a = n\pi$
 $= 0$ if $n \neq m$ or $|A|^2 = 1$ if $n = m \Rightarrow A = \sqrt{a}$.
 $Thus \left[\frac{\Psi_n(x)}{4\pi} = \frac{1}{2} \sin(\frac{\pi x}{2}) \right]$
Note: the symmetry of even $(n = 1, 5, ...)$, odd $(n = 2, 4, 6...)$ settes.
d) $\frac{\Psi(x)}{2\pi} = \frac{\pi}{6} c_n \sqrt{a} sin(k_n x) e^{i\frac{\pi x}{6}}$ where $c_n = \int_0^{n} \frac{\pi}{6} sin(\frac{\pi x}{2}) \frac{\Psi(x)}{2} dx$
 $n = \sum_n c_n^2 c_n (\frac{\Psi_n}{6} sin(k_n x)) e^{i\frac{\pi x}{6}}$ where $c_n = \int_0^{n} \frac{\pi}{6} sin(\frac{\pi x}{2}) \frac{\Psi(x)}{2} dx$
 $a = \sum_n c_n^2 c_n (\frac{\Psi_n}{6} sin(k_n x)) = \int_0^{1} \frac{\pi}{6} c_n^2 c_n (\frac{\pi x}{6} sin(\frac{\pi x}{2})) \frac{\Psi(x)}{6} dx$
 $a = \sum_n c_n^2 c_n (\frac{\Psi_n}{6} sin(k_n x)) = \sum_{n=1}^{n} c_n^2 c_n s_{nn} = \sum_n c_n^2 c_n = \sum_n k_n |x|^2 - 1$
This locks very similar to the normalization $\int |W_n|^2 dx = 1$
 $k = \frac{\pi}{6} n^2 c_n (\frac{\pi}{6} a sin(k_n x)) = \frac{\pi}{6} c_n^2 c_n (\frac{\pi}{6} x = \frac{\pi}{6} k_n |x|^2 - \frac{\pi}{6} k_n |x|^2 - \frac{\pi}{6} k_n |x|^2 + \frac{\pi}{6} k_n |x|^2 - \frac{\pi}{6} k_n |x|^2 + \frac{\pi}{6} k_n$

$$\begin{aligned} & \text{Example: let } P_{0}(x) = \sqrt{a} \quad (\text{uniform probability}) \\ & \text{C}_{n} = \langle \Psi_{n} | \Psi_{0} \rangle = \sqrt{2} \int_{a}^{2} dx \sin(k_{n}x) \cdot 1 \quad \text{note symmetry} \\ &= \sqrt{2} \left(-\frac{\cos(k_{n}x)}{k_{n}} \Big|_{a}^{a} \right) = \sqrt{2} -\frac{(-1)^{n}+1}{n\pi T_{n}} = \sqrt{8} \quad \text{Shodd} \\ & \text{Mathematrica: } \sum_{k=0}^{2} \frac{1}{(2k\pi)^{2}} = \frac{\pi^{2}}{8} \implies \sum_{k=0}^{2} |C_{n}|^{2} = 1 \\ & \langle E \rangle = \sum_{n \text{ odd}} |C_{n}|^{2} E_{n} = \sum_{n \text{ odd}} \left(\frac{\sqrt{8}}{n\pi T} \right)^{2} \xrightarrow{k=0} \infty 1. \end{aligned}$$

* exercise 2.4

$$\langle x \rangle_{n} = \langle \Psi_{n} | x | \Psi_{n} \rangle = \int_{0}^{\infty} dx |\Psi_{n}|^{2} x = \int_{0}^{\infty} dx \frac{1}{\alpha} \sin^{2} k_{n} x \cdot x$$

$$= \frac{2}{\alpha} \left[-\frac{\cos(2k_{n}x)}{8k_{n}^{2}} - \frac{x}{\sin(2k_{n}x)} + \frac{x^{2}}{4} \right]_{0}^{\alpha} = \frac{\alpha}{2}$$

$$\langle x^{2} \rangle_{n} = \langle \Psi_{n} | x^{2} | \Psi_{n} \rangle = \frac{\alpha^{2}}{6} \left(2 - \frac{3}{\pi^{2}n^{2}} \right)$$

$$\langle p \rangle_{n} = \langle \Psi_{n} | -i\pi \frac{1}{8x} | \Psi_{n} \rangle = 0 \quad \text{note:} \quad d(uv) = udv + vdu$$

$$\langle p^{2} \rangle_{n} = \langle \Psi_{n} | -i\pi \frac{3}{8x^{2}} | \Psi_{n} \rangle = \pi^{2} \frac{\pi^{2}n^{2}}{\alpha^{2}} = \pi^{2} k^{2} \quad \text{so that } E_{n} = \frac{p_{n}^{2}}{2m}$$

$$\text{note:} \quad (p^{2}, H) = 0 \quad \text{thus } |\Psi_{n} \rangle \text{ has definite } p^{2}_{n} = \pi k^{2} \frac{\pi^{2}}{\alpha}$$

$$(\nabla_{x} \cdot \nabla_{p})_{n} \geqslant \int \alpha^{2} (\frac{1}{12} - \frac{1}{2\pi^{2}}) \cdot \frac{\pi\pi}{\alpha} = \pi \pi \sqrt{12} - \frac{1}{2\pi^{2}} = 0.5678 \text{ the } \frac{\pi}{\alpha}$$

$$\text{use Mathematica}$$