
University of Kentucky, Physics 521
Homework #11, Rev. B, due Monday, 2016-02-22

0. Griffiths [2ed] Ch. 4 #26, #28, #30, #34, #53, #56, #59, #61.

1. Neutron in a magnetic field–the neutron is spin-12 with magnetic moment µn = −1.91 µN
in units of the nuclear magneton µN = e~

2mp
. The corresponding operator is µ = µnσ. The

gyromagnetic factor is γn = gsµN/~, where the Landé factor is gs = 2µn. Due to spin precession
in the magnetic field, both the classical and quantum mechanical equations of motion are greatly

simplified in a rotating reference frame, where ( x̂′ ŷ′ ) = ( x̂ ŷ )
(

cosωt − sinωt
sinωt cosωt

)
. [Rabi,

Ramsey, Schwinger, Rev. Mod. Phy. 26, 167, 1954]

a) Solve the classical equation of motion [see our class notes]

dS

dt
= τ = µn ×B = γnS ×B (1)

for Larmor precession of a neutron in a constant magnetic field ẑB0, with initial spin S0 at t = 0.
Using the following steps, solve for the same motion in the rotating frame: since the operator ωdt×
generates rotation, dS

dt = dS′

dt + ω × S, where dS′

dt is with respect to components in the rotating

frame. Substite dS
dt into Eq. 1 and show that the form remains the same except for the replacement

of B with the effective field B′ = B + ω/γn. Note this field is zero if the frame is rotating at the
Larmor frequency ωL = −γnB, and thus the spin remains constant S′ = S0. Reconcile this with
the solution in the static frame.

b) Solve the same precession quantum mechanically [see our class notes] starting from the initial

state χ0 =
(
a
b

)
. Show that the expected value of spin 〈S〉(t) agrees with the classical result.

Using the results of Griffiths Ch. 4 #56, show that χ(t) = exp(−iω ·S t)χ′(t) for χ′ in the rotating
frame. Show that the same effective field B′ = B + γnω as above appears in the Hamiltonian in
the rotating frame. Thus the state remains constant if the frame rotates at the Larmor frequency.
Show that this is equivalent to the solution in the static frame.

c) Note that the spin state m does not change in a constant magnetic field ẑB0. Because it
maintains the spin state, it is called a holding field. To make a transition, we use an oscillatory
(RF) field B1(x̂ cosωt + ŷ sinωt). In the rotating frame with angular velocity ẑω, show that the
total field is B′ = ẑ(B0 + ω/γn) + x̂B1, which is constant. Let θ be the angle between B′ and
ẑ, and let the initial spin be S0 = ẑ. Show classically that the z-component of the spin varies
as Sz(t) = S0(cos2 θ + sin2 θ cos γnB1t) = S0(1− sin2 θ sin2(γnB1t/2)), which oscillates at the Rabi
flopping frequency γnB1. Plot the amplitude of oscillations as a function of the RF frequency ω
and note the resonance at ω = ωL. Thus this is called a resonant transition, and is the basis of
nuclear magnetic resonance (NMR), a technique used in MRI machines. Plot the 3-d trajectory of
S in the lab frame over half a Rabi cycle.

d) Solve the same problem quantum mechanically to show that the probability |a(t)|2 of mea-
suring spin up at time t, is the same as the classical result Sz(t)/S0.

e) [bonus] An alternative to resonant transitions (with the RF frequency tuned to the Larmour
frequency for a specific time) are adiabatic transitions, where the RF frequency (or holding field
B0) is swept across the Larmour frequency. If the magnetic field direction varies much slower than
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the precession frequency, the direction of S will adiabatically follow the direction of the field. Plot
the trajectory of the total field vector B′ in the rotating frame as the frequency varies from ω � ωL

to ω � ωR to show that the spin transitions from spin up to spin down. What is the limit on how
fast the frequency can be swept?
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