L64-Temperature and Chemical Potential

Friday, February 26, 2016

* Review and elaboration of Lagrange Multipliers:

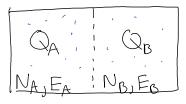
$$S = k \left[G = ln(Q) + 2(N - EN_n) + B(E - EN_nE_n) \right]$$
microstates # partides total Energy

$$dE = \beta k dS - \frac{2}{6} dN - dW (work) E, S, N, V, M: extensive$$

$$= T dS + \mu dN - (PdV + BdM + ...) T, \mu, P, B: intensive$$

- to see physical significance of ln Q, divide the system (single-particle states) into 2 parts: A, B

$$Q = Q_A$$
 · Q_B ·



- in thermal equalibrium $dS = dS_A + dS_B = 0$ "max.ent." also energy bolance $dE = F_A k dS_A + F_B k dS_B = 0$ Since $dS_A = -dS_B$, $E_A = E_B = kT$ "temperature" There is no "energy" gradient transfering heat.

"k'' = conversion factor from units of T to E (Boltzman const and also units of S=klnQ, since dE=TdS

- like wise, in chemical equilibrium, $dE = \frac{\alpha}{\beta_a} dN_A + \frac{\alpha}{\beta_b} dN_B = 0$ Since $dN_A = -dN_B$ $\frac{\alpha}{\beta_A} = \frac{\alpha}{N_B} = 1$ "chemical potential" There is no "energy" gradient pushing on particles.

* Example: Free Gas (recall Fermi Gas!)

- now n-> k= |k|, a continuous degree of freedom $E_n \rightarrow E_k = \frac{f_c^2 k^2}{2m}$ $R = \left(\frac{T_{1} n_x}{2x}, \frac{T_{1} n_y}{2x}, \frac{T_{1} n_z}{2x}\right)$, one state per $\frac{V_{1}}{2}$

$$d_{k} \rightarrow d^{3}n = \frac{1}{15}d^{3}k = \frac{1}{15}(\frac{1}{8}4\pi k^{2}dk) = \frac{1}{2\pi^{3}}k^{2}dk \quad \text{in one octant}$$

$$N = \sum_{k=1}^{N} \sum_{$$

"Equipartition theorem": \$\forall T = ave. energy / degree of freedom

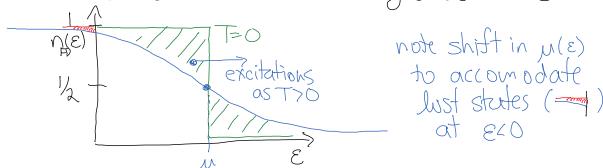
* Summany:

$$N(\varepsilon) = \left[e^{(\mu - \varepsilon)/kT} + \int_{-\infty}^{\infty} \frac{Fermi-Dirac}{Bose-Einstein} \right]^{-1}$$

T: stretches distribution out in energy. $E=\xi d_{\epsilon}n_{\epsilon}.\epsilon$ u: shifts distribution left/right $N=\xi d_{\epsilon}n_{\epsilon}$

Note: for M-B distribution $e^{(u-\varepsilon)kT} = e^{uk} e^{-\varepsilon/kT}$ acts like a normalization. if d_{ε} const.

- Fermi-Dirac distribution -> Fermi gas as T-> 0



- Bose-Einstein dist.

MT) < O at high temp.

As T > O, exponential decross of the maximum # of particles can fit in the distribution. The rest condense into the ground state. (A finite fraction of all particles) This is called the "Bose-Einstein Condensate".

examples: superfluid helium ultra cold boson'ic atoms

* Example: Blackbody Radiation

assumptions: a) $E=h\omega$ b) $c=\frac{\omega}{K}$ c) $d_s=2$ circ. pol

d) N is not conserved, but $\mu = 0$ constant instead

Then $d_k = \frac{2V}{2\pi^2} k^2 dk = \frac{V}{\pi^2 c^3} dW$ $dN_k = d_k e^{-\beta E}$

 $p(\omega) = \frac{dN_{\rm t}E_{\rm k}}{Vd\omega} = \frac{\hbar\omega}{\pi^2c^3(e^{\hbar\omega/kT-1})}$ as discussed last somester