
University of Kentucky, Physics 521
Homework #13, Rev. A, due Thursday, 2017-02-02

0. Griffiths [2ed] Ch. 3 #39; Ch. 4 #27, #30, #31, #49, #52, #53.

1. Clifford algebra. The complete 3-vector algebra including dot and cross products can be
implemented using the identity (I) as the unit scalar and Pauli matrices (σ) as unit vectors:

1 = I ≡
(

1 0
0 1

)
x̂ = σx ≡

(
0 1
1 0

)
ŷ = σy ≡

(
0 −i
i 0

)
ẑ = σz ≡

(
1 0
0 −1

)
. (1)

The dot and cross products can be represented by matrix multiplication, as in the formula

σiσj = I(σi · σj) + i(σi × σj) = Iδij + iεijkσk, (2)

where the dot and cross products are interpreted in the usual sense of unit vectors. Note the
difference between the imaginary i and the index i. Also note that scalars are often implicitly
multiplied by I when adding with other matrices. This algebra generalizes to a space-time algebra
using the Dirac matrices γµ instead of the Pauli matrices σi.

a) Verify this formula for all nine products σiσj and show it is equivalent to the expression

(σ · a)(σ · b) = a · b+ iσ · (a× b). (3)

Here, σx, σy, and σz are considered to be unit vectors as opposed to components of a vector σ.

b) Which products are symmetric and which are antisymmetric? A general matrix product has
both symmetric and antisymmetric parts, but this partition of symmetry into i = j and i 6= j is
the defining feature of a Clifford algebra.

c) Show that any linear product a ◦ b, can be decomposed into the sum a ◦ b = {a ◦ b}+ 〈a ◦ b〉
of symmetric {a ◦ b} ≡ 1

2(a ◦ b + b ◦ a) and antisymmetric 〈a ◦ b〉 ≡ 1
2(a ◦ b − b ◦ a) parts, with

respect to exchange of a and b. Show that 〈a ◦ a〉 = 0 always. Why are the diagonal elements of
an antisymmetric matrix zero? Apply this decomposition to the product σiσj .

c) The imaginary i in the above formula is not present in the ordinary cross product. It dis-
tinguishes [axial] pseudovectors from [polar] vectors. Using part a), calculate the value of the
pseudoscalar σiσjσk and show it is completely antisymmetric in i, j, k. What is the analog of this
triple product in terms of standard vector products?

2. Generators of rotation. In Griffiths #3.39, we showed that px/~ is the generator of translation
and H/~ is the generator of time evolution of the wavefunction: exp(−ipxx0/~)ψ(x) = ψ(x − x0)
and exp(−iHt0/~)Ψ(x, t) = Ψ(x, t + t0). We also saw an example of this in Homework 9, where

Mz = ẑ× =
(

0 −1
1 0

)
generates Rφ = exp(Mzφ) =

(
cosφ − sinφ
sinφ cosφ

)
, which rotates 2-dimensional

vectors (spin 1, not two-component s=1
2 spinors). In 3-d, M = (Mx,My,Mz) generates the rotation

Rω = exp(M · ω) = I cosω +M ·ω̂ sinω + ω̂ω̂T (1− cosω) of 3-vectors about the axis ω.

a) In analogy with px, show that Lz generates the rotation of a wave function about the z-axis:
exp(−iφ0Lz/~)ψ(r, θ, φ) = ψ(r, θ, φ − φ0). This generalizes to exp(iL · ω)ψ(r) = ψ(Rωr), where
Rω is a normal rotation matrix for vectors.
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b) Show that the generators M are the cartesian equivalent of the 3 × 3 spin s=1 generator
matrices iS/~ in spherical tensor components of Griffiths #4.31. Hint: The vector v = (vx, vy, vz)
has spherical tensor components v±1 = 1√

2
(vx ± ivy) and v0 = vz, which are not the same as its

spherical components v = r̂vr + θ̂vθ + φ̂vφ.

c) Calculate the s = 1
2 spinnor rotation matrices Ri(φ) = exp(iσiφ/2) about the i = x, y, z axes.

How do these relate to the eigenvectors of σ · n̂ in Griffiths #3.30? Show that a spinnor changes
sign after a full revolution and must be rotated by 4π to return back to its original value.
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