University of Kentucky, Physics 521 Homework #14, Rev. A, due Friday, 2017-02-10

- **0.** Griffiths [2ed] Ch. 4 #28, #58, #59, #61.
- 1. Neutron in a magnetic field—the neutron is spin- $\frac{1}{2}$ with magnetic moment $\mu_n = -1.91 \ \mu_N$ in units of the nuclear magneton $\mu_N = \frac{e\hbar}{2m_p}$. The corresponding operator is $\boldsymbol{\mu} = \mu_n \boldsymbol{\sigma}$. The gyromagnetic factor is $\gamma_n = g_s \mu_N / \hbar$, where the Landé factor is $g_s = 2\mu_n$. Due to spin precession in the magnetic field, both the classical and quantum mechanical equations of motion are greatly simplified in a rotating reference frame, where $(\hat{\boldsymbol{x}}' \ \hat{\boldsymbol{y}}') = (\hat{\boldsymbol{x}} \ \hat{\boldsymbol{y}}) \begin{pmatrix} \cos \omega t & -\sin \omega t \\ \sin \omega t & \cos \omega t \end{pmatrix}$. [Rabi, Ramsey, Schwinger, Rev. Mod. Phy. 26, 167, 1954]
 - a) Solve the classical equation of motion [see our class notes]

$$\frac{d\mathbf{S}}{dt} = \boldsymbol{\tau} = \boldsymbol{\mu}_n \times \boldsymbol{B} = \gamma_n \boldsymbol{S} \times \boldsymbol{B} \tag{1}$$

for Larmor precession of a neutron in a constant magnetic field $\hat{z}B_0$, with initial spin S_0 at t=0. Using the following steps, solve for the same motion in the rotating frame: since the operator $\omega dt \times$ generates rotation, $\frac{dS}{dt} = \frac{dS'}{dt} + \omega \times S$, where $\frac{dS'}{dt}$ is with respect to components in the rotating frame. Substite $\frac{dS}{dt}$ into Eq. 1 and show that the form remains the same except for the replacement of B with the effective field $B' = B + \omega/\gamma_n$. Note this field is zero if the frame is rotating at the Larmor frequency $\omega_L = -\gamma_n B$, and thus the spin remains constant $S' = S_0$. Reconcile this with the solution in the static frame.

- b) Solve the same precession quantum mechanically [see our class notes] starting from the initial state $\chi_0 = \begin{pmatrix} a \\ b \end{pmatrix}$. Show that the expected value of spin $\langle \mathbf{S} \rangle(t)$ agrees with the classical result. Using the results of Griffiths Ch. 4 #56, show that $\chi(t) = \exp(-i\boldsymbol{\omega} \cdot \mathbf{S} t\hbar)\chi'(t)$ for χ' in the rotating frame. Show that the same effective field $\mathbf{B}' = \mathbf{B} + \gamma_n \boldsymbol{\omega}$ as above appears in the Hamiltonian in the rotating frame if \mathbf{B} is parallel to $\boldsymbol{\omega}$. Thus the state remains constant in the frame that rotates at the Larmor frequency. Show that this is equivalent to the solution in the static frame.
- c) Note that the spin state m does not change in a constant magnetic field $\hat{z}B_0$. Because it maintains the spin state, it is called a holding field. To make a transition, we use an oscillatory (RF) field $B_1(\hat{x}\cos\omega t + \hat{y}\sin\omega t)$. In the rotating frame with angular velocity $\hat{z}\omega$, show that the total field is $\mathbf{B}' = \hat{z}'(B_0 + \omega/\gamma_n) + \hat{x}'B_1$, which is constant. Let θ be the angle between \mathbf{B}' and \hat{z} , and let the initial spin be $\mathbf{S}_0 = \hat{z}$. Show classically that the z-component of the spin varies as $S_z(t) = S_0(\cos^2\theta + \sin^2\theta\cos\gamma_n B_1 t) = S_0(1 2\sin^2\theta\sin^2(\gamma_n B_1 t/2))$, which oscillates at the Rabi flopping frequency $\gamma_n B_1$. Plot the amplitude of oscillations as a function of the RF frequency ω and note the resonance at $\omega = \omega_L$. Thus this is called a resonant transition, and is the basis of nuclear magnetic resonance (NMR), a technique used in MRI machines. Plot the 3-d trajectory of \mathbf{S} in the lab frame over half a Rabi cycle.
- d) Solve the same problem quantum mechanically to show that the probability $|a(t)|^2$ of measuring spin up at time t, is the same as the classical result $S_z(t)/S_0$.