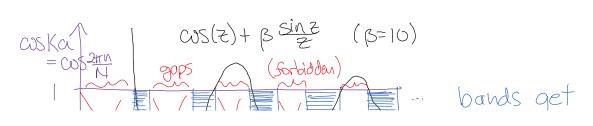
L61-Periodic Potential

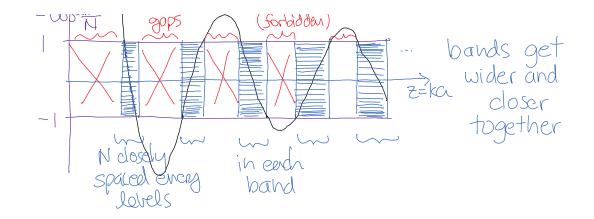
Wednesday, February 17, 2016 07:34

* recall wave function of Dirac potential $\Psi(\mathbf{x})$ $\psi_{s}(x)$ 0 6 a $\mathcal{N}(x) = -\mathcal{S}(x)$ for 2 nuclei, the wave functions look like combinations of the single - 8 wave functions (symmetric / antisymmetric) - as a -> 20 the two energies become nearly degenerate. - N nuclei support N symmetric/antisymmetric states - As N>00 these on states form a continuous band. * Bloch's theorem: if V(x+a) = V(a) with periodic boundary conditions, then H += E + has periodic eigenfunctions $+(x+a) = e^{ika} + (x)$ where K depends on E, not x. -note: $\Psi(x + a) \neq \Psi(x)$ but $|\Psi(x + a)|^2 = |\Psi(x)|$ as expected Hhis is similar to spin, where $R_{360} X = -X$ but $|X|^2$ is invariant proof: let $D(\Psi(x)) = \Psi(x + a)$ translation operator. since N is periodic, [H,D] = 0. ie. $HD \Psi(x) = H(x) \Psi(x+a) = H(x+a) \Psi(x+a) = D[H(x)\Psi(x)] = DH \Psi(x)$ Thus, there are simultaneous eigenfunctions of H and D $\Psi(x+a) = D\Psi(x) = \pi\Psi(x) = e^{ika}\Psi(x) \qquad \pi = e^{ika}$

Period BCS:
$$\Psi(\alpha + N\alpha) = e^{iKM\alpha} \Psi(\alpha) \Rightarrow (e^{iK\alpha})^{N} = 1$$

the N Nthroots of unity are: $K\alpha = 2\pi \frac{1}{N}$ n=0,1,...N-1
Thus, periodic potentials have "phase-offset periodic" solutions.
* Band structure: an important feature of periodic potentials
consider the Dirac counds" potential: $V(\alpha) = \sum_{j=0}^{N-1} d_j \delta(\alpha \cdot j\alpha)$
with BCS: $\Psi(N\alpha) = \Psi(0)$
 $\Psi'(N\alpha) = \Psi(0)$
this is a dree particle between 8's.
 $\Psi(\alpha) = e^{iK\alpha}(Asin(kiwa)) + Bcos(kiwa))$ - accord where $E = \frac{4\pi k^2}{2in}$
 $\Psi(\alpha) = e^{iK\alpha}(Asin(kiwa)) + Bcos(kiwa))$ - accord (Blocks theorem)
BCS: $\Psi(0) + \Psi(0)$ B - $e^{iK\alpha}(Asink\alpha + Bcos(\alpha)) = 0$ (I)
 $\Psi(0) + \Psi(0) = 2m^2 + 10$ (A - $e^{iK\alpha}(Asink\alpha + Bcos(\alpha)) = 2m^2 B$ (I)
I: A sinka - $(e^{iK\alpha} - \cos k\alpha) = 3$, substitute A into (I) $\times \frac{sink\alpha}{BK}$:
 $(e^{iK\alpha} - acos(\alpha + e^{iK\alpha}(\cos k\alpha + sin^2k\alpha)) = 3 \frac{1}{KK} sink\alpha$
 $e^{iK\alpha} - acos(\alpha + e^{iK\alpha}(\cos k\alpha + sin^2k\alpha)) = 3 \frac{1}{KK} sink\alpha$
 $\cos K\alpha = \cos k\alpha + \frac{m\alpha k}{K\alpha} \frac{sink\alpha}{K\alpha} = \cos z + \mu sin z = S(z)$
recall that $K\alpha - 2\pi \frac{1}{K}$ almost continuous OsKa (2\pi)





* fermions fill 2 e per single-particle state. Let there be q free electrons / atom

then insulator	for	q = 0, 2, 4,	$Cu: p=1.7\mu D \cdot Cu$	(×10-6)
conductor	for	$q \neq 0, 2, 4,$	Quartz: $P=75 EQ \cdot cm$	$(x O^{1\delta})$
sewi conductor	for	$q \approx 0, 2, 4$	close to the edges =	5 orders of maguiluok!