University of Kentucky, Physics 521 Homework #13, Rev. A, due Wednesday, 2018-01-24

- **0.** Griffiths [2ed] Ch. 3 #39; Ch. 4 #27, #30, #31, #49, #52, #53.
- 1. Clifford algebra. The complete 3-vector algebra including dot and cross products can be implemented using the identity (I) as the unit scalar and Pauli matrices (σ) as unit vectors:

$$1 = I \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \hat{\boldsymbol{x}} = \boldsymbol{\sigma}_x \equiv \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \hat{\boldsymbol{y}} = \boldsymbol{\sigma}_y \equiv \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \hat{\boldsymbol{z}} = \boldsymbol{\sigma}_z \equiv \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \quad (1)$$

The dot and cross products can be represented by matrix multiplication, as in the formula

$$\sigma_i \sigma_j = I(\sigma_i \cdot \sigma_j) + i(\sigma_i \times \sigma_j) = I\delta_{ij} + i\epsilon_{ijk}\sigma_k, \tag{2}$$

where $\sigma_{i,j}$ in the dot and cross products are interpreted as unit vectors. Note the difference between the imaginary i and the index i. Also note that scalars are often implicitly multiplied by I when adding with other matrices. Also note this algebra generalizes to a space-time algebra using the Dirac matrices γ^{μ} instead of the Pauli matrices σ_i .

a) Verify Eq. 2 for all nine products $\sigma_i \sigma_i$ and show it is equivalent to the expression

$$(\boldsymbol{\sigma} \cdot \boldsymbol{a})(\boldsymbol{\sigma} \cdot \boldsymbol{b}) = \boldsymbol{a} \cdot \boldsymbol{b} + i\boldsymbol{\sigma} \cdot (\boldsymbol{a} \times \boldsymbol{b}). \tag{3}$$

Here, σ_x , σ_y , and σ_z are treated as to components of a vector $\boldsymbol{\sigma}$, although a more natural interpretation is as unit vectors, so that $\boldsymbol{\sigma} \cdot \boldsymbol{a} = \sigma_x a_x + \sigma_y a_y + \sigma_z a_z \approx \hat{\boldsymbol{x}} a_x + \hat{\boldsymbol{y}} a_y + \hat{\boldsymbol{z}} a_z$.

- b) Which products are symmetric and which are antisymmetric, ie. $\sigma_i \sigma_j = \pm \sigma_j \sigma_i$? In general, a matrix product has both symmetric and antisymmetric parts, but the simple in terms of i = j and $i \neq j$ defines a Clifford algebra.
- c) Show that any linear product $\mathbf{a} \circ \mathbf{b}$, can be decomposed into the sum $\mathbf{a} \circ \mathbf{b} = \{\mathbf{a} \circ \mathbf{b}\} + \langle \mathbf{a} \circ \mathbf{b} \rangle$ of symmetric $\{\mathbf{a} \circ \mathbf{b}\} \equiv \frac{1}{2} (\mathbf{a} \circ \mathbf{b} + \mathbf{b} \circ \mathbf{a})$ and antisymmetric $\langle \mathbf{a} \circ \mathbf{b} \rangle \equiv \frac{1}{2} (\mathbf{a} \circ \mathbf{b} \mathbf{b} \circ \mathbf{a})$ parts, with respect to exchange of \mathbf{a} and \mathbf{b} . Show that $\langle \mathbf{a} \circ \mathbf{a} \rangle = 0$ always. Apply this decomposition to the product $\sigma_i \sigma_j$. In the same manner, any matrix can be decomposed as the sum of a symmetric and antisymmetric matrix. Why are the diagonal elements of an antisymmetric matrix zero?
- d) The imaginary i in the above formula is not present in the ordinary cross product. It distinguishes [axial] pseudovectors from [polar] vectors. Using part a), calculate the value of the pseudoscalar $\sigma_i \sigma_j \sigma_k$, where $i \neq j \neq k$, and show it is completely antisymmetric in i, j, k. What is the analog of this triple product in terms of dot and cross products?
- 2. Generators of rotation. In Griffiths #3.39, we showed that p_x/\hbar is the generator of translation and \mathcal{H}/\hbar is the generator of time evolution of the wavefunction: $\exp(-ip_xx_0/\hbar)\psi(x) = \psi(x-x_0)$ and $\exp(-i\mathcal{H}t_0/\hbar)\Psi(x,t) = \Psi(x,t+t_0)$. We saw another example in H09, where $M_z = \hat{z} \times = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ generates the orthogonal matrix $R_{\phi} = \exp(M_z\phi) = \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix}$, which rotates 2-dimensional vectors (spin 1, not two-component $s=\frac{1}{2}$ spinors). In 3-d, $\mathbf{M} = (M_x, M_y, M_z)$ generates the rotation $R_{\omega} = \exp(\mathbf{M} \cdot \boldsymbol{\omega}) = I \cos \omega + \mathbf{M} \cdot \hat{\boldsymbol{\omega}} \sin \omega + \hat{\boldsymbol{\omega}} \hat{\boldsymbol{\omega}}^T (1 \cos \omega)$ of 3-vectors about the axis $\boldsymbol{\omega}$.
- a) In analogy with p_x , show that L_z generates the rotation of a wave function about the z-axis: $\exp(-i\phi_0L_z/\hbar)\psi(r,\theta,\phi) = \psi(r,\theta,\phi-\phi_0)$. This generalizes to $\exp(i\boldsymbol{L}\cdot\boldsymbol{\omega})\psi(\boldsymbol{r}) = \psi(R_{\boldsymbol{\omega}}\boldsymbol{r})$, where $R_{\boldsymbol{\omega}}$ is a normal rotation matrix for vectors.

- b) Show that the generators M are the cartesian equivalent of the 3×3 spin s=1 generator matrices iS/\hbar in spherical tensor components of Griffiths #4.31. Hint: The vector $\mathbf{v} = (v_x, v_y, v_z)$ has spherical tensor components $v_{\pm 1} = \frac{1}{\sqrt{2}}(v_x \pm iv_y)$ and $v_0 = v_z$, which are not the same as its spherical components $\mathbf{v} = \hat{\mathbf{r}}v_r + \hat{\boldsymbol{\theta}}v_\theta + \hat{\boldsymbol{\phi}}v_\phi$.
- c) Calculate the $s=\frac{1}{2}$ spinnor rotation matrices $R_i(\phi)=\exp(i\sigma_i\phi/2)$ about the i=x,y,z axes. How do these relate to the eigenvectors of $\sigma \cdot \hat{n}$ in Griffiths #4.30? Show that a spinnor changes sign after a full revolution and must be rotated by 4π to return back to its original value.