Depositing Li_{7-x} La_3 Zr_{2-x} Ta_xO_{12} (LLZTO) Thin Films Using Pulse Laser Deposition University of Alkhatab Al Busaidi, Genaro Lozano, Mackenzie Walker, Tina Tong, Sujan Shrestha, and Ambrose Seo Kontile W Department of Physics and Astronomy

ABSTRACT: Recently, lithium-ion batteries became of a great interest in industry due to their high energy density and reasonable price. Garnet-type electrolytes (e.g., LLZTO) can be of great contribution to these batteries due to their outstanding properties. In this research, LLZTO thin film was deposited using Pulse Laser Deposition. An LLZTO pellet (target for PLD) was re-grinded and a new pellet was produced, using uniaxial dry pressing followed by sintering and X-ray Diffraction (XRD) analysis. The LLZTO film was deposited on a stainless-steel substrate at 500 °C for 40 min . The oxygen partial pressure was 75 mTorr with an energy of 452 mJ. The XRD of the target/pellet before PLD was generally LLZTO was not deposited. However, it is still cannot be concluded that LLZTO was not deposited, as the peaks between angles 40° to 60° match with the original LLZTO target, so it may be that the peaks of stainless-steel had interfered. However, this needs more investigation and evaluation in order to give a final conclusion.

Background & Motivation

- Lithium-ion batteries (LIB) are considered to have high energy density and reasonable price [1]
- However, current liquid LIBs have the risk of leakage [1] and flammability [2] ✤ For future solid-state LIBs, LLZTO is one of the candidates
- Garnet-type electrolytes (e.g., LLZTO) are considered to have great energy
- density, high temperature stability, electrochemical stability and safety [3]
- Thin films have better properties, due to morphology, composition and structure [4]
- ✤ Thin films are more applicable and can cover large areas (contact area)

- Cathode c Garnet
- \clubsuit Lithium lanthanum zirconium tantalum oxide (Li_{7-x} $La_3 Zr_{2-x} Ta_x O_{12}$) is modified version of $Li_7La_3Zr_2O_{12}$ (LLZO)
- Ta occupies some of the Zr sites and helps maintaining a cubic structure [3]
- Cubic structure has higher conductivity (can reach to 10⁻⁴ S/cm at RT) than tetragonal structure [3]

Introduction

Aims:

- To re-synthesize an LLZTO target
- Mainly: Depositing thin films of LLZTO
- Characterizing LLZTO thin film properties

Sintering

Densification and improving mechanical properties

X-ray Diffraction (XRD)

> Used to check the crystal structure, impurities and phases

Pulse Laser Deposition (PLD)

► Based on physical vapor deposition (PVD). In a high-vacuum chamber, a beam of laser strikes the sample. The sample will evaporate as plasma plume and then deposited as a thin film on a substrate [6]

Hypotheses:

- During re-synthesizing, samples may break
- In general, the deposition may be challenging
- Different substrates need to examined
- High temperatures will cause Li loss, due to Li volatility

Conclusions

 \succ As expected, high temperatures results in losing Li, as Li tend to escape the sample due to its high volatility. Therefore, phases may be affected

The final Li content can be said to be 6.2 mol, based on literature

> The overall LLZTO deposition did not work quite well

 \succ However, there were some peaks between the angles 40° to 60° that almost matched with the original LLZTO target's XRD

 \succ These peaks can also be an interference between the the stainless-steel substrate XRD and the LLZTO XRD, but more investigation needs to be done in order to get better conclusion

Future Work

- Repeat the experiment in order to get more accurate data Do more investigation using X-ray Photoelectron Spectroscopy (XPS)
- ✤ Examining different substrates, like MgO, Al₂O₃, Cu foil, etc. ✤ Trying different deposition conditions, manipulating temperature, pressure, deposition period, etc.
- Characterizing the LLZTO thin film and its properties
- Working to deposit epitaxial thin films of LLZTO

References

[1] Sang A Yoon et al. "Preparation and Characterization of Ta substituted Li 7 La 3 Zr 2-x O 12 Garnet Solid Electrolyte by Sol-Gel Processing". In: Journal of the Korean Ceramic Society 54.4 (2017), pp. 278–284.

[2] Q. Liu et al., "Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries", Journal of Power Sources, vol. 389, pp. 120-134, 2018.

[3] Chengwei Wang et al. "Garnet-type solid-state electrolytes: materials, interfaces, and batteries". In: Chemical reviews 120.10 (2020), pp. 4257–4300.

[4] Mattia Saccoccio et al. "Low temperature pulsed laser deposition of garnet Li6. 4La3Zr1. 4Ta0. 6O12 fils as all solid-state lithium battery electrolytes". In: Journal of Power Sources 365 (2017), pp. 43-52.

[5] M. Raju, F. Altayran, M. Johnson, D. Wang and Q. Zhang, "Crystal Structure and Preparation of Li7La3Zr2O12 (LLZO) Solid-State Electrolyte and Doping Impacts on the Conductivity: An Overview", *Electrochem*, vol. 2, no. 3, pp. 390-414, 2021.

[6] Hans-Ulrich Krebs et al. "Pulsed laser deposition (PLD)–a versatile thin film technique". In: Advances in Solid State Physics (2003), pp. 505–518.

Acknowledgement

• This work was supported by the National Science Foundation (NSF) Grant No. DMR-2104296 and the Vehicle Technologies Office of the U.S. Department of Energy Battery Materials Research (BMR) Program under Contract Number DD-EE0008863.Also, we thank Prof. William Gannon, Prof. Lance Delong, Santosh Bhusal and Nancy Miller for helping us.