Simulating Particle Beamlines using Python

Jason Sikest

IDepartment of Physics and Astronomy, University of Kentucky
Research Mentor: Dr. Tim Gorringe

Abstract Beamline Arrangements Dipoles

For particle accelerators to properly store and record data from FODO Cells Another beamline element used to direct particles is the magnetic
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Single Meter Restriction Infinite Effective Focal Length Future Plans

To compare the effects the two cells have on identical particles, a Effective focal lengths depend on the individual focal lengths of each lens and their separation distances The next steps towards developing a more cohesive particle
FODO and triplet cell were simulated given the following parameters: » Specific values can be chosen to create a system of FODO cells with an infinite effective focal length beamline simulation is to implement individual particle momentum.
* supply equivalent effective focal lengths * No net movement in transverse plane This allows for the simulation to account for effects that arise from
* occupy the same amount of space » Two FODO cells for 180° rotation or four FODO cells for a complete 360° rotation momentum dispersion such as particle filtering.

It was found that the triplet cell was more effective at focusing the
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